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Abstract 
 

In this dissertation we have given some new algorithms for blind equalization. In case of 

the equalization based on second order statistics (SOS), a sufficient condition for blind 

equalization is given and proved when the source symbols are coloured. Based on the given 

condition a new algorithm for coloured sources has been derived. The performance of the new 

algorithm as given by simulations is comparatively better than the previous works, especially at 

low signal to noise ratios. Then a new energy matching technique in SOS domain is introduced. 

It is very simple and computationally light scheme, which provides faster convergence. This 

scheme is valid only for equal energy source symbols. It outperforms the existing techniques of 

same category in simulations. 

The work is then carried out for the domain of higher order statistics (HOS). In order to 

take advantage of both the SOS and HOS based techniques the hybrid approach of HOS-SOS is 

developed. The cost function of HOS based algorithms is modified by imposing the conditions 

based on SOS, which resulted into another new algorithm for binary source symbols. The 

algorithm gives excellent results and converges in three to five epochs only. This work is then 

further extended to cut down the computational complexity. Some over–stressing conditions 

with little contribution to the performance but possessing higher level of complexity have been 

removed. Energy constraint as given in SOS domain is also applied in the hybrid domain.  

Further modification is done to deal with complex source symbols e.g. 4–QAM. All this 

resulted in a much faster algorithm, which converges in one epoch only. Simulation results of 

each algorithm demonstrate the validity and superior performance of the new algorithms over 

the previous works. Some concluding remarks and future directions in this field have been 

proposed at the end. 



 vi

List of Publications and Submissions 

1. A. Hussain, A. Naveed, I.M. Qureshi, “New Hybrid HOS-SOS Approach for 

Blind Equalization of Communication Channels,” IEE Electronics Letters, vol. 

41, no. 6, pp. 376-377, 2005. 

2. A. Naveed, A. Hussain, I.M. Qureshi, T.S. Durrani, “Blind Restoration of 

Symbols from Binary and QAM Coloured Sources using Hybrid HOS-SOS 

Approach,” Revised and Submitted to IEEE Trans. Circuits and Systems–I. 

3. A. Naveed, A. Hussain, I.M. Qureshi, S. Fiori, “Blind Equalization of Channel 

for Equal Energy Sources: Energy Matching Approach,” IEE Electronics Letters, 

vol. 42, Issue. 4, pp. 247-248, 2006. 

4. A. Naveed, I.M. Qureshi, T.A. Cheema, M.A.S. Choudhri, “ A New Approach to 

Blind Channel Equalization using Second Order Statistics,” Accepted for 

publication in Circuits, Systems & Signal Processing journal. 

5. A. Naveed, I.M. Qureshi, T.A. Cheema, A. Hussain, “Blind Equalization of 

Communication Channels with Equal Energy Sources Using a Combined HOS-

SOS Approach,” Accepted for publication in IEEE International Conference on 

Engineering of Intelligent Systems 2006. 

6. T.A. Cheema, I.M. Qureshi, A. Jalil, and A. Naveed, “Artificial Neural Networks 

for Blur Identification and Restoration of Nonlinearly Degraded Images,” 

International Journal of Neural Systems, vol. 11, vol. 5, pp. 455–461, 2001. 

7. T.A. Cheema, I.M. Qureshi, A. Jalil, A. Naveed, “Blurred Image Restoration of 

Nonlinearly Degraded Images using ANN and Nonlinear ARMA Model,” 



 vii

Journal of Intelligent Systems, vol. 11, no. 5, pp. 299–312, 2001. 

8. A. Jalil, I.M. Qureshi, T.A. Cheema and A. Naveed, “Feature Extraction of Hand 

Written Characters by using Non-linear and Unsupervised Neural Networks,” 

Journal of Information Science and Engineering (JISE), vol. 21, no. 2, pp. 453-

473, 2005. 

9. A. Naveed, I.M. Qureshi, A. Jalil and T.A. Cheema, “Blind Equalization and 

Estimation of Channel using Artificial Neural Networks,” IEEE 8th International 

Multitopic Conference INMIC 2004, Lahore, Pakistan, pp. 184-190, 2004. 

10. T.A. Cheema, I.M. Qureshi, A. Jalil, and A. Naveed, “Blur and Image 

Restoration of Nonlinearly Degraded Images using Neural Networks Based on 

Modified ARMA Model,” IEEE 8th International Multitopic Conference INMIC 

2004, Lahore, Pakistan, pp. 102-107, 2004. 

11. I.M. Qureshi, T.A. Cheema, A. Naveed and A. Jalil, “Genetic Algorithms Based 

Artificial Neural Networks for Blur Identification and Restoration of Degraded 

Images,” Pakistan Journal of Information and Technology(PJIT), vol. 2, no. 1, 

pp. 21-24, 2003. 

12. A. Jalil, I.M. Qureshi, A. Naveed and T.A. Cheema, “Feature Extraction by 

using Non-linear and Unsupervised Neural Networks,” Pakistan Journal of 

Information and Technology (PJIT), vol. 2, no.1, pp. 40-43, 2003. 

13. I.M. Qureshi, A. Naveed, T.A. Cheema and A. Jalil, “Artificial Neural Networks 

for Microstructure Analysis of Rolling Process,” Pakistan Journal of Information 

and Technology (PJIT), vol. 2, no.1, pp. 65-68, 2003. 



 viii

Acknowledgement 
 
 

 

Praise and thanks be to ALMIGHTY ALLAH, The compassionate and The merciful. 

Who gave us what we deserved and even more, what we did not deserve. All the knowledge 

emanates from the Almighty Lord.  

Peace and prayers for His Prophet HAZRAT MUHAMMAD (S.A.W.) Whose 

incomparable life is the perfect model and mercy for all the creation. 

 I offer my sincere thanks to my supervisor, Dr. Ijaz Mansoor Qureshi, for his able 

guidance, useful suggestions and dynamic supervision throughout the research work. His 

personal interest and constructive  criticism resulted in the completion of this dissertation. 

 I like to express my gratitude for scholarly guidance, co-operation and useful 

advices of my co-supervisor, Dr. Amir Hussain.  

I would also like to forward my thanks to all my friends who encouraged me in the 

successful completion of this dissertation. Among my friends are  Prof. Abdul Jalil, Dr. 

Tanveer Ahmed Cheema and Ch. Amir Saleem. 

 I also wish to express my feeling of gratitude to my brothers, and  relatives, who 

prayed for my health and brilliance. Mr. Ghias Malik deserves my thanks for his support in 

the typing of this manuscript.  

Last but not least, I offer my profound gratitude to my wife, Sumaira and son, Anas, 

for being patient and co-operative throughout my research period. 

(AQDAS NAVEED MALIK) 



 ix

Contents 

 
Abstract v 

List of Publications and Submissions vi 

Acknowledgement viii 

List of Figures xii 

Table of Abbreviations xiv 

Table of Notations xvi 

Chapter 1 Introduction 1 

 1.1 Introduction 1 

 1.2 HOS Based Approaches 3 

 1.3 SOS Based Approaches 5 

  1.3.1 Subspace Methods 5 

  1.3.2 Maximum Likelihood Methods 7 

 1.4 Contributions of the Dissertation 9 

 1.5 Organization of the Dissertation 11 

Chapter 2 Mathematical Formulation of Implicit HOS and SOS Based 

Algorithms 

13 

 2.1 Implicit HOS Based Algorithms 13 

  2.1.1 Conventional Bussgang algorithm 14 

  2.1.2 Modified Bussgang Algorithm 18 

 2.2 SOS Based Algorithm 20 

  2.2.1 Problem Statement 20 



 x

  2.2.2 Neural Network and Learning Algorithm 24 

Chapter 3 Blind Equalization of Channel Using SOS with Coloured 

Sources 

27 

 3.1 Theoretical Framework 28 

  
3.1.1 Condition for Blind Equalization with Coloured 

Sources. 

29 

  3.1.2 Neural Network and the new Learning Algorithm 33 

 3.2 Phase Ambiguity in Equalized Symbols for Real Channel 35 

 3.3 Simulations and Results 36 

 
3.4 Energy Matching Approach for Blind Equalization of Channels 

with Equal Energy Sources 

43 

  3.4.1 Problem Formulation for Energy Matching Technique  44 

  3.4.2 Simulation and Results for Energy Matching Approach 47 

Chapter 4 Hybrid HOS-SOS Approach for Blind Equalization of 

Channels 

50 

 4.1 Introduction 50 

 4.2 New Proposal 51 

 4.3 Simulation Results for Binary Case 57 

 
4.4 Extension to Complex Coloured 4-QAM and the use of Energy 

Matching Term 

62 

  4.4.1 Proposed Modification 62 

  4.4.2 Simulation and Results for Modified Algorithm 65 

Chapter 5 Conclusions 70 



 xi

 5.1 Conclusions 70 

 5.2 Future Works 72 

References 74 

Appendix–A     Proof of Theorem 89 

Appendix–B     Derivation of the terms 91 

Appendix–C     Construction of channels 94 

 



 xii

List of Figures 
 

 

Figure 2.1 AWGN channel model 15 

Figure 2.2 Block diagram for the Bussgang algorithm 15 

Figure 2.3 Block diagram for the modified Bussgang algorithm 18 

Figure 2.4 Block diagram for equalizer with SOS scheme 21 

Figure 2.5 Linear ANN for equalization. 25 

Figure 3.1 Symbols after equalization at different SNR 38 

Figure 3.2 SER for real and complex channels versus SNR. 41 

Figure 3.3 NRMSISI for real and complex channels versus SNR. 41 

Figure 3.4 SER versus number of source symbols for real and complex 

channels. 

42 

Figure 3.5 NRMSISI versus number of source symbols for real and complex 

channels. 

42 

Figure 3.6 Block diagram of proposed algorithm 44 

Figure 3.7 NRMSISI versus SNR (db) for white and coloured sources 48 

Figure 3.8 SER versus SNR (db) for white and coloured sources. 48 

Figure 3.9 NRMSISI versus SNR (db) at different number of source symbols. 49 

Figure 4.1 Schematic presentation of the proposed algorithm 52 

Figure 4.2 Values of output symbols vs. number of symbols for both the 

channels and both the algorithms.  

59 

Figure 4.3 MSE vs. No. of epochs for both the channels and both the 60 



 xiii

algorithms. 

Figure 4.4 MSE vs. SNR  for both the channels and both the algorithms. 61 

Figure 4.5 MSE vs. No. of symbols for both the channels and both the 

algorithms. 

61 

Figure 4.6 Modified equalization algorithm. 64 

Figure 4.7 SER and NRMSISI vs SNR for channel–1 with white and 

coloured sources from 4-QAM. 

67 

Figure 4.8 SER and NRMSISI vs SNR for channel–2 with white and 

coloured sources from 4-QAM. 

68 

Figure 4.9 SER vs SNR for binary source symbols for both the channels 69 

Figure C.1 Three ray multipath channel 94 

Figure C.2 Overall channel 95 

Figure C.2 Zeros plot for Tong and Valcarce channels 96 

 
 
 



 xiv

Table of Abbreviations 
 

AAF Adaptive Activation Function 

ANN Artificial Neural Networks 

AWGN Additive White Gaussian Noise 

BE Bayesian Estimator 

BER Bit Error Rate 

CMA Constant Modulus Algorithm 

CR Cross Relation 

CRB Cramer–Rao Bound 

DMLE Deterministic Maximum Likelihood Estimation 

DSM Deterministic Subspace Methods 

FIR Finite Impulse Response 

GSM Group Special Mobile  

HF High Frequency 

HOC Higher Order Cumulants 

HOS Higher Order Statistics 

iid independently identically distributed 

ISI Inter Symbol Interference 

LSS Least Squares Smoothing 

MAI Multiple Access Interference 

MIMO Multiple Input and Multiple Output 

ML Maximum Likelihood 



 xv

MSE Mean Square Error 

NRMSISI Normalized Root Mean Square Inter Symbols Interference 

SER Symbol Error Rate 

SGSD Stochastic Gradient Steepest Descent 

SIMO Single Input and Multiple Output 

SISO Single Input and Single Output 

SMLE Statistical Maximum Likelihood Estimation 

SNR Signal to Noise Ratio 

SOS Second Order Statistics 

SSM Statistical Subspace Methods 

 

 



 xvi

Table of Notations 
 

s  Source symbols 

x  Received symbols at the channel output 

y  Equalizer output symbols 

h  Channel vector 

s  Source symbols vetor 

w  Equalizer vector 

x  Received symbols vector 

y  Equalized symbols vector 

H  Channel matrix 

R  Correlation matrix 

W  Equalizer matrix 

  Complex constant with unit norm 

 ,   Step sizes 

 
 

We shall use the notation B , B , B , B̂  and  E B  for complex conjugate, transpose, 

hermitian, estimated and expected value of B , respectively. Bold and capital symbols, such 

as B , stand for matrix, bold and small symbols, such as b , stand for vector and unbold 

symbols, such as b , stand for scalar quantities. 



 1

Chapter 1 

Introduction 
 
 

1.1 Introduction  

 There is an ever growing demand for high quality and high speed wireless 

communication. One of its major limiting factors is intersymbol interference (ISI). ISI 

may be due to one or more of the following factors. These factors could be the frequency 

selective characteristics of the channel, time varying multipath propagation which is 

prominent in mobile communication, carrier phase jitter, symbol clock residual jitter and 

limited channel bandwidth. 

 ISI is the major problem for single input and single output (SISO) and single input 

and multiple output (SIMO) channels. In case of multiple input and multiple output 

(MIMO) channels, multiple access interference (MAI) is also equally important problem 

to reckon with. Since in this dissertation, MIMO channels are not being considered, 

therefore ISI and its solutions are of major concern. 

If the a priori knowledge of the channel is available, one can use this information 

for carrying out the equalization. However, in practical world most of the communication 

is through the unguided wireless medium for which the a priori knowledge of the channel 

does not exist. Hence simple equalization is practically of no use. The standard adaptive 

approach has been through the use of training sequences. This does waste a fraction of 
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transmission time and hence decrease the communication throughput, but the effect may 

be fairly insignificant in case of time invariant channels. However, for time-varying 

channels, the loss of throughput is fairly significant. For example, for high frequency 

(HF) communication, it can be as high as fifty percent of the total possible throughput. 

The group special mobile (GSM) system, which has considerable overhead for 

training needs blind equalization. Some of the computer networks in which terminals 

need to be linked asynchronously with the central computer need blind equalization 

because training is almost impossible. Some other areas for blind equalization are high 

definition television, image restoration, geosciences, acoustic, speech etc. 

  In order to save the resource bandwidth and avoid the need of training phase, 

extensive research has gone in the techniques of unsupervised adaptive or blind 

equalization, which does not require any training sequences. Instead, the statistics of the 

transmitted symbols is being used to carry out equalization at the receiver without access 

to the symbols and the knowledge of the channel. While in case of the standard adaptive 

equalizer, the equalized output sequence is made close to the source symbol sequence in 

the mean square sense, in case of the blind equalizers, the statistics of the equalized 

output sequence are made to approach the statistics of the transmitted input sequence.  

 The channel dealt with in this problem is modeled as a finite impulse response 

(FIR) filter having finite length. Its coefficients formulate the finite impulse response of 

the channel. It would be easy to carry out the inverse filtering using zero forcing 

algorithm provided the channel is minimum phase, that is, all the zeros of the transfer 

function of the channel lie within the unit circle. Practical channels considered in this 

dissertation are nonminimum phase, resulting in an inverse filter that is no more stable. 
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Henceforth, one has to come up with more sophisticated techniques which are known as 

blind equalization techniques. The approaches and algorithms developed for blind 

equalization can be put broadly into two categories firstly, those based on higher order 

statistics (HOS) and secondly, those based on second order statistics (SOS) called SOS 

techniques.  

 

1.2 HOS Based Approaches 

 The HOS based approaches have been the first in fashion for blind equalization of 

channels. They fall in two categories based on how the HOS of the received signal is 

exploited. First is the explicit HOS based category in which higher order cumulants 

(HOC) or their discrete Fourier transform called polyspectra, have been used. The first 

ones to propose in this direction were Pan et al. [1] and Hatzinakos et al. [2]. A moving 

average process models the received signal. The trispectrum of the received signal is used 

to identify the multipath channels. The algorithm provides exact identification of a 

nonminimum phase channels, whenever the HOS and trispectrum of the observed signal 

can be estimated accurately. This explicit HOS based algorithm, however, suffers from 

computational complexity and slow convergence as compared to other techniques. Since 

the received signal is sampled at baud rate, it is sensitive to timing recovery, unknown 

phase jitter and frequency offset. Lastly, if the noise is non–Gaussian, it may affect the 

performance of this HOC based approaches. Some of the works based on explicit HOS 

were [1]–[6]. The explicit SISO methods using HOS include the inverse filter criteria 

(IFC)-based algorithm [7]–[14], the super–exponential algorithm [15]–[20] and 

polyspectra –based algorithms [21]–[22]. 
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Second is the implicit HOS based approach. HOS of the received signal is 

exploited indirectly. It is also called Bussgang type algorithm. When this algorithm 

converges in the mean square sense, the deconvolved signal exhibits Bussgang statistics, 

hence the name. The first major work in this direction was that of Sato [25] in which he 

used a nonconvex cost function that was minimized. This idea was implemented on the 

blind equalization of M–ary pulse amplitude modulation (PAM) systems. This idea was 

further developed and generalized by Godard [26] to give a class of constant modulus 

algorithm (CMA) for blind equalization [27]–[28]. In digital communication, the CMA 

has been a widely used approach to alleviate the ISI effect induced by telephone, cable or 

radio channels [29]–[30]. Treichler and Agee [31], Benveniste and Goursat [32], Picci 

and Prati [33] and [34]–[40] are some of the further developments in this very direction.  

All the above are special cases of Bussgang algorithm. They are based on implicit 

HOS and are derived via some optimization criterion that involves HOS of the 

observation indirectly. They usually have a nonconvex cost function which is being 

minimized by stochastic gradient based algorithm.  

The major disadvantage of these implicit HOS based algorithms is their potential 

for converging to local minimum [41], [42]. It has been pointed out in [42] that global 

convergence can be jeopardized if the channel has finite impulse response. Shalvi and 

Weinstein [43] have proposed an optimization criterion that ensures global optimization 

wherever ideal equalizers exist. However, these techniques are still sensitive to timing 

jitter and exhibit slow rate of convergence.  
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1.3 SOS Based Approaches 

 In the fast changing world of cellular communication, the methods with slow rate 

of convergence and greater computational complexities will be less popular 

comparatively. There has been a trend of shifting from HOS based algorithms to SOS 

based algorithms after the seminal work of Gardener [44] and Tong et al.[45], [46].  

 They explored the cyclostationary properties of an oversampled communication 

signal to allow the blind channel estimation by using SOS of the channel output. Ever 

since, people have come up with promising algorithms and techniques for their research 

problems, based on SOS [47]–[57]. Many developments have taken place in identifying 

nonminimum phase channels without using HOS. Following is a brief discussion on the 

subspace and maximum likelihood methods. 

 

1.3.1 Subspace Methods 

 These methods have closed forms. The channel vector is represented in one-

dimensional subspace of observation statistics. Then with Q  being the matrix 

representing the noise structure, we optimize the quadratic cost function [44]  

 
ˆ arg min H S h h Qh h  

where S is a set that specifies the domain of the channel vector h . Subspace methods are 

mainly of two types, deterministic subspace methods (DSM) and statistical subspace 

methods (SSM). 

 The DSM has no assumption about the structure of the input source. They assume 

noise to be white with zero mean covariance 2 . They also assume the knowledge of the 
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channel order. Both these assumptions are impractical. However, the noise variance and 

channel order detection may be done jointly using singular values of the estimated 

covariance matrix [47]. Xu et al. [59] and Hua et al. [60] have given necessary and 

sufficient condition for the identifiability of the channel which is mainly the coprime 

nature of the subchannels. 

 In DSM, there are three approaches being followed for identification. First one is 

the cross relation (CR) approach. [61]–[64], [90], [113]. This approach exploits the 

multichannel structure. Its adaptive approach with artificial neural networks (ANN) was 

given by [65] and [66]. CR method is very effective for small data sample at high signal 

to noise ratio (SNR). In [90] it has been shown that CR method combined with maximum 

likelihood (ML) approach gives performance close to Cramer–Rao bound (CRB) [91]. 

The drawback of this CR approach is that channel order L  cannot be overestimated. 

Moreover, this algorithm may also be biased for finite samples. 

The second approach is the noise subspace approach given by Moulines [104], 

[105]. This approach forces the signal space to have a block Toeplitz structure. This 

approach is similar to CR method but slightly more complex. It also requires the 

knowledge of the channel order.   

 The third approach is the least squares smoothing (LSS) approach. Its key idea 

hinges on the relation between the input and the observation spaces. Apart from the fact 

that a channel estimation problem has been converted to LSS problem, the joint order 

detection and channel identification can be done in a fashion to minimize the smoothing 

error [67], [68]. This approach is the only one that enables channel identification with the 

knowledge of the upper bound of the channel order only. 
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 The SSM does assume that the source is a random sequence with known SOS. It 

assumes source sequences as zero mean, white with unit variance. Similarly the noise 

sequence is zero mean, with variance 2  and uncorrelated to source sequence. Channel 

order is assumed to be known, but some of the SSM require only the upper bound of the 

channel order. Once SOS at the output of the channel are known, the channel can be 

uniquely determined provided the subchannels are coprime. 

The first SSM approach using SOS for blind channel estimation was given by 

Tong et al. in [69], [70]. They gave the two step closed form algorithm for identification 

of the channel. It was shown that once the correlation matrices with lag 0 and lag 1 at the 

output of the channel are known, the channel parameter matrix is identifiable. 

The second SSM approach using SOS was given by Slock [84], [85], [86] 

followed by Abed–Meriam [87] and Valcarce et al. [88]. They used the linear prediction 

formulation of the multichannel problem. The algorithm uses SOS of the received signal. 

It does not require the exact order of the channel. The main drawback of linear prediction 

approach is that it is not robust in the presence of noise, since its algorithm is derived 

from the noiseless model. However, using autocorrelation techniques for estimation of 

parameters, people have decreased the effect of noise by subtracting the term related to 

noise. 

 

1.3.2 Maximum Likelihood Methods 

Maximum likelihood (ML) method is also one of the most popular parameter 

estimation method. Asymptotically under certain regularity conditions, the performance 

of ML estimation approaches the CRB. Unlike subspace based approach, the ML 



 8

approach usually cannot be obtained in closed form. Moreover, this approach suffers 

from the existence of local minima. However, the approach has been made more efficient 

by using suboptimal approach as initial procedure. The ML–based blind channel 

estimation can be of two types. Statistical ML estimation (SMLE) and deterministic ML 

estimation (DMLE). In SMLE the input sequence is assumed to be random but with 

known statistics. The only unknown parameter is the channel vector. The dimension of 

this unknown vector is fixed with respect to the data size. The SMLE depends on the 

availability and the evaluation of the likelihood function. If the input is independently 

identically distributed (iid) and noise is zero mean and additive white Gaussian noise 

(AWGN), then a theorem states that channel is identifiable by likelihood function if, and 

only if, one of the two conditions is satisfied, i.e., Either input symbols are non Gaussian 

or subchannels are coprime [72]. References [72]–[78] are different endeavors in this 

direction. 

 In case of DMLE, the input sequence is also a part of the unknown parameters 

alongwith the channel. Thus the dimension of the parameters increases with the size of 

the observed data. The iterative quadratic ML approach proposed by Bresler and 

Macovski [79], and two-step ML approach proposed by Hua [79], [79] fall in this 

category. Slock [86], Harikuma and Bresler [79] and [80]–[83] are some of the works on 

DMLE type of algorithms. 

 Considering the computational intensity of the subspace methods and the ML 

methods, researchers have also considered neural network based direct signal estimation 

techniques [94].  Fang  et al. [95]–[96] has used linear neural network for blind 

equalization. In [96] they have used statistics matching of the symbols at the input of the 
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transmitter and the output of the equalizer. The square of the elements of the difference 

matrix between the correlation matrices at both ends of the channel has been minimized 

using stochastic gradient algorithm. This gives the updating formula for the weights of 

the equalizer, which is like a linear neural network. This approach has been discussed in 

detail in chapter 2, and would be of our interest in contributions. 

 

1.4 Contributions of the Dissertation 

The contributions given in this dissertation are divided into two categories. First category 

deals with the SOS–based approaches, whereas the second category provides the 

combined HOS–SOS approaches for blind equalization. 

In case of SOS domain it has been proved that even for coloured sources, if the 

correlation matrix of the received symbols with lag greater than or equal to 1 is equal to 

the corresponding correlation matrix of the source symbols, then there exists a unique 

equalizer. This equalizer will give us the equalized symbols when applied to the channel 

output vectors. The equalized symbols will be the estimates of the original source 

symbols multiplied by a complex constant of unit norm. Based on this condition a cost 

function has been developed. Minimization of this cost function gives us the learning 

algorithm. The new algorithm has shown robustness against different channels and 

different values of SNR. The results are much improved espatially at low SNR as 

compared to the previous work in the literature. 

Another algorithm in the SOS–domain has been given for the equal energy source 

symbols. It has been proved that if the input symbols to the channel have equal energies, 

then the blind equalization can be achieved by making the energies of the output symbols 
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equal to that of input symbols. This scheme is valid for both the coloured and white 

source symbols constellations. Thus oversampling of channel output plus energy 

mayching of the source and equalizer symbols ended up in another very simple and 

useful algorithm providing excellent convergence in only one epoch. The bit error rate 

(BER) for the new algorithm is almost zero even at SNR=20db. The algorithm performs 

well for the minimum number of received symbols.  

In case of the hybrid or combined HOS-SOS approaches we have mainly focused on 

the Bussgang algorithm which is basically implicit HOS based technique for blind 

equalization. We have employed the SOS based statistics matching in addition to the 

modifications given by the modified Bussgang algorithm [98]. No oversampling is used 

in this case. The SOS of the transmitted symbols at the input of the channel must be equal 

to that of the received symbols at the output of the channel. Initially we have used the 

correlation matrices with lag zero and lag one for SOS matching. The norm of the 

weights of the equalizer was constrained to be a fixed value. The result of this combined 

HOS-SOS approach was a faster convergence, achieved in about 3-5 epochs. The new 

algorithm proved to be equally valid for the channels with and without norm one. The 

limitation of the original and modified Bussgang algorithms is their assumption about 

channel norm equal to one. 

The final modification was valid only for those source symbols constellations in 

which the symbols have equal energy. Another term was added to the cost function called 

as energy matching term for input and output symbols. Moreover, for statistics matching 

only one correlation matrix with lag zero was used. In case of modified Bussgang 

algorithm given in [98] a constraint on the norm of the weights of equalizer has been 
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used. Such type of constraint is required to avoid the ill – conditioning of equalizer. In 

case of the new algorithm this constraint has been removed. The removal of such 

constraint was not possible in the absence of the correlation matching term. This 

modification has further cut down the computational complexity. After these 

modifications the new algorithm is providing the convergence in one epoch only. The 

computational cost has also been reduced. 

 

1.5 Organization of the Dissertation 

 The remaining portion of this dissertation is organized as follows: Chapter 2 gives 

the original Bussgang algorithm as dealt by Bellini [97] and then the modified algorithm 

given by Fiori [98]. It covers all the essential mathematical details and principles. This 

chapter also contains the detailed SOS approaches using statistics matching and linear 

neural networks as direct blind equalizers. 

  Chapter 3 contains two new algorithms in SOS domain. First one is the 

genlization of SOS based algorithms for colour and white sources, with less complexity. 

The second one provides equalization for equal energy sources with requirement of 

energy matching and oversampling only.  

Chapter 4 contains the hybrid HOS-SOS approaches. This can be considered as an 

important improvement to the conventional Bussgang type algorithms. There are about 

three to four modifications done in a manner that we can be justified to call it a hybrid 

HOS–SOS approach. Enough simulations have been given to verify the validity of the 

new proposed algorithms. Results of the new algorithms has been compared with 

different algorithms available in the literature.  
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Chapter 5 concludes the thesis. It gives summary of the results in SOS and hybrid 

HOS-SOS approaches. Some applications are suggested and also some future directions 

of research have been proposed. 
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Chapter 2 

Mathematical Formulation of Implicit HOS and SOS 

Based Algorithms 

 
 
 In this chapter, we have given the actual Bussgang algorithm which is based on 

implicit HOS. This is the work of Bellini [97]. Then we have presented the modifications 

to the Bussgang algorithm put forward by Fiori [98]. Its simulation and results are given 

in chapter 4 for comparison with the new proposed algorithms for hybrid HOS–SOS 

approach.  

The second half of this chapter deals with the algorithm based on SOS. We have 

focussed on neural network approach whose learning algorithm is based on the matching 

of statistics of the input symbols and the symbols at the output of the equalizer. This 

approach is given by Fang [95]–[96]. Since our new algorithm in SOS domain is related 

to this work, we have given its complete formulation along with relevant details. 

 

2.1 Implicit HOS Based Algorithms 

In this section first we discuss the conventional Bussgang algorithm as given by 

Bellini [97]. Then we discuss the modification of this Bussgang algorithm as given by 
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Fiori [98]. Since our present work is also in this direction therefore we have also given its 

sufficient mathematical details. 

 

2.1.1 Conventional Bussgang algorithm  

 

 We first present the basic theme of blind equalization with the Bussgang 

algorithm. The discrete impulse response  nh of Additive White Gaussian Noise 

(AWGN) channel is unknown and is assumed to have finite support of length hL i.e. 

 1 2 1hLh h h h  . It is assumed that 2 1k
k

h  , which implies the use of 

automatic gain control. This keeps the variance of the channel output, ( )x n , constant. In 

general, the channel is noncausal 0kh   for 0k   [101]. The input sequence,  ( )s n , to 

the channel comes from zero mean, stationary and independent and identically distributed 

(iid) source such that  ( ) ( ) klE s k s l  .  

The output symbols,   ,x n from the channel as depicted in Fig 2.1 is given as  

      
1

0

hL

k
k

x n h s n k n




     (2.1.1) 

where ( )n  is zero mean, AWGN. It is neglected in the mathematical analysis because 

ISI dominates the degradation due to additive noise. However, we shall use AWGN noise 

in simulation and results. Figure 2.2 represents the block diagram for the conventional 

Bussgang algorithm. The transversal filter has m  number of tap weights. The output of 

the transversal filter is given as 

 



 15

 

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 2.1  AWGN channel model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.2  Block diagram for the Bussgang algorithm. 

Transversal filter 

 )(ˆ nwi
 

Zero memory non linear 
estimator,  

(Bayesian estimator)

LMS–style 
algorithm 

+-

)(nx  )(nz ˆ( ) ( )y n s n

( ) ( ) ( )e n y n z n 

+

 ( )s n

( )n  

( )x n  
+ ( )h n  
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       ^

( ) ( )

i i ii i
z k w x i k w w x i k

s k v k

     

 
 (2.1.2) 

where iw  is the i th optimal tap weights of the transversal filter and ˆ iw  are their estimate. 

( )v k  is residual ISI, called the convolution noise. It is AWGN with zero mean. 

Moreover, it is statistically independent of the source sequence and its time-varying 

variance,  2 n , decreases as the adaptive algorithm converges [101]  

The zero memory nonlinear estimator produces ( )y n  , which is the estimate of 

( )s n ( ˆ( ) ( )y n s n ). It is given as 

   ˆ( )s n g z n  (2.1.3) 

The estimation error is taken as ( )e n  such that 

 
  

ˆ( ) ( ) ( )

( )

e n s n z n

g z n z n

 

 
 (2.1.4) 

The cost function is given as 

 

   

2

2

1
( ) ( )

2
1

( )
2

J n E e n

E g z n z n

   

    

 (2.1.5) 

The updating formula for the weights of the transversal filter is given as: 

 ˆ ˆ( 1) ( ) ( ) ( ) 0, 1, ,i iw n w n x n i e n i L         (2.1.6) 
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where   is the step size parameter and ( )x n i  is the  ith tap input of the transversal filter 

at iteration n . It has been assumed that the input symbols, ( )s n , have uniform 

distribution with zero mean and unit variance. That is, the PDF for  ns  is  

   1

2 3 3 3
( )

otherwise0
s

s
f s

    


 

In the above scenario, result given by Bellini [97] for output symbols as estimate of input 

symbols, ŝ , is given as 

 
 

ˆ

s

s E s z

sf s z ds




   

 
 

Using the Bayes rule 

      
 

z s
s

z

f z s f s
f s z

f z
  

therefore, 

 
     

1 2

0 0 1 2

1
ˆ

( ) ( )

( ) ( )

z s
z

s sf z s f s ds
f z

Z z Z zz

c c Q z Q z










 




 (2.1.7) 

where the scaling factor 0c  is slightly smaller than unity. Its purpose is to keep the mean 

square value, 2E z   , equal to unity. The variables   

  1 0

1
3z z c


   

and 
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       2 0

1
3z z c


   

The functions  
2

2
1

( )
2

z
Z z e


  

and 

 
2

2
1

( )
2

q

z

Q z e dq



   

 

2.1.2 Modified Bussgang Algorithm  

 Fiori [98] has given the modification to the Bussgang algorithm. First 

modification is the constraint on the weights of the transversal filter 2( )T kw w . Second 

modification is the replacement of zero memory nonlinear estimator (Bayesian estimator) 

 

 

 

 

 

 

Fig. 2.3  Block diagram for the modified Bussgang algorithm. 

 

by an adaptive activation function (AAF). Due to the first modification the cost function 

becomes  

       2 21

2
T

oldJ n E g z z        
w w  (2.1.8) 

  

Transversal filter 

 )(ˆ nwi
 

AAF 

( ) tanh( )g z a z  

SGSD Algorithm 

+-

)(nx  )(nz ˆ( ) ( )y n s n

)(ne

+
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where w is the weight vector and   is a Lagrange multiplier, combined with the constant 

2  it incorporates the constraint of norm on the weights. The Bayesian estimator is 

replaced by the AAF given by 

   tanh( )g z a z  (2.1.9) 

where both a  and   are adaptive. Using LMS algorithm on  oldJ n  Fiori gets updating 

formulae for weights w , a  and   [100]. Fiori has reported the fact that the product a  

converges asymptotically to some constant  . Thus the updating of a  and   has been 

incorporated in one single updating formula for   given as  

    2( )
( )old

g z z
g z z z g z

 
 

            
 (2.1.10) 

where   is step size.  

The updating of weights using SGSD algorithm is given as,  

     
2

2( ) 1old w g z g z z


  
          

w x  (2.1.11) 

 
The constraint on the norms is not implemented automatically through the Lagrangian, 

but instead after every iteration the weights 



w

w
w

. The equations (2.1.9) to (2.1.11) 

formulate the gradient-based blind equalization method given by Fiori [98]. The 

simulations and results for the work of Fiori [98] have been done in chapter 4. 

Comparisons have been done with the proposed hybrid HOS-SOS approach.   
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2.2 SOS Based Algorithm 

 This category exploits only  Second Order Statistics (SOS) of the received signal 

for recovery of the source symbols. This approach has gained importance due to the 

seminal work  by Gardner [44] and Tong [45]–[46]. Most of the algorithms based on SOS 

use either subspace methods or ML methods [45]–[88]. However, they are 

computationally heavy as they are like batch processing algorithms. An alternative 

approach uses linear ANN for direct blind equalization, [95], [96], [106]–[110]. In this 

case, online learning is performed such that the output symbols not only produce the 

statistics of the original source symbols but they are in fact the original symbols 

multiplied by a unit norm constant. 

 

2.2.1 Problem Statement 

 A digital communication model is shown in Fig. 2.4. In this case,  js  presents 

the sequence of source symbols applied at the input of the channel. The source symbols 

are transmitted into the channel at baud rate T1 , i.e. T  is the symbol interval, t  denotes 

the continuous time, )(tx  is the received symbol, )(tv  is zero mean additive white 

Gaussian noise (AWGN). The overall channel response is given by ( )h t . Though the 

transmitted symbols sequence at the input of the channel is discrete, the received channel 

output is continuous in time due to the convolution of the channel response with the input 

symbols. The remaining two blocks on right hand side of this figure are used for 

equalization. The most general equation for the received symbols at the output of the  
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Fig. 2.4  Block diagram for equalizer with SOS scheme. 

 

time-invariant channel in a digital communication system can be written in the form 

given by: 

 ( ) ( ) ( )k
k

x t s h t kT v t




    (2.2.1) 

In order to solve the problem of blind equalization, following assumptions are made. 

1. Symbol interval T  is known and is a multiple of the sampling period  , i.e. 

dT  , where d  is a positive integer. 

2. Channel is like an FIR filter with finite impulse response )(th , such that, 0)( th  

for 0t  and cLt  , where nTLc  . 

3.  js  is a sequence of stationary white source symbols with zero mean, such that 

*
k l klE s s     .  

)(tv  is white with zero mean and uncorrelated to  js . It is neglected at first stage 

because of its negligible contribution as compared to ISI [101]. However, its 

effect is considered on the performance in the simulations. 

 Taking into account the assumptions 2 and 4, (2.2.1) becomes  

Channel 
( )h t  

 
Oversampling 

Blind 
equalization 

 js  

( )t  

 ( )x t   jx  ˆj jy s  
+ 
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1

( ) ( )
c

t

T

k
t L

k
T

x t s h t kT

 
  

    

   (2.2.2) 

where  u  means highest integer less than or equal to u . For )(tx  which is sampled in 

any general interval, Tq )1(   to qT , we get  

 
1

( ( 1) ) (( 1) ) 0,.., 1
q

k
k q n

i
x i q T s h k q T i d

d




 

         (2.2.3) 

Now we consider an observation interval of length mT , where m  is a positive integer. 

The received signal in this observation interval can be expressed in vector form as  

 ( ) ( ) 0,1,.., 1i i i md  x Hs  (2.2.4) 

where 

  ( ) ( ) ( ) ( ( 1) )i x iT x iT x iT md     x   (2.2.5) 

  1 2 1( ) i n i n i mi s s s


     s   (2.2.6) 

and 

 

 

1 2

1 2

1 2

n

n

n

 
 
 
 
 
 

h h h 0 0 0 0

0 h h h 0 0 0
H

0 0 0 0 h h h





       



 (2.2.7) 

where 

   1 1
( ) ( ) ( )

T

l

d
h n l T h n l T h n l T

d d

                 
h   (2.2.8) 

and 0  is a vector of zeros. 
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The channel diversity, which is the requirement for blind equalization based on 

techniques using only SOS [45], has been exploited here. The duration of observation 

interval and over-sampling is selected in such a way that (2.2.4) becomes over- 

determined, i.e. the number of rows of matrix H becomes greater than or equal to the 

number of columns, 1 nmmd . This makes H  a full-column rank matrix to assure 

the solvability of the blind equalization problem in accordance with the condition given 

by Tong et al. [45]. At this stage if H  is known, then the problem is quite simple. The 

estimated output can be taken as 

 1ˆ( ) ( ) ( )i i  s H H H x  (2.2.9) 

where 1( )  H H H  is the pseudo-inverse of H . However, in case of blind equalization, 

H  is unknown. 

 The autocorrelation function of the source symbols, ( )is  is defined by 

 ( ) ( ) ( )H
s k E i i k   R s s  (2.2.10) 

Hence  

 
(0)

( ) for 0

s

n
s n n



 

R I

R J
 

where I  is the identity matrix, and  

 

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

 
 
 
 
 
 
  

J







    



 

is a shifting matrix. 

Similarly the autocorrelation function of the equalizer output ( )iy , is defined as 
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 ( ) ( ) ( )y k E j j k   R y y  (2.2.11) 

The following theorem gives a necessary and sufficient condition for the blind 

equalization when source is white [96]. 

Theorem 2.1: 

 Suppose H  and  is  satisfy the linear model given by (2.2.4).  is  are from 

white source and H  is a full column rank matrix. There exists a linear transformation W  

i.e. 

 ( ) ( )i iy Wx  (2.2.12) 

such that for 1   

 IWH  (2.2.13) 

if, and only if, the following two conditions are satisfied  

 (0) yR I  (2.2.14) 

 (1) yR J  (2.2.15) 

where I is the identity matrix and J  is the shifting matrix given above. Please see 

Appendix–A for the proof. 

 

2.2.2 Neural Network and Learning Algorithm 

 The block diagram of the linear ANN as proposed by Fang et al. [96] is shown in 

Fig. 2.5. The received symbols sequence  jx  at the output of the channel is applied to 

the input layer L1 of the proposed ANN as sequence of vectors ( )jx , each having length 

md . The network layer L2 provides the equalized output ( )jy , which is an estimate of  
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Fig. 2.5  Proposed ANN for equalization. 

 

the source symbols. In order to establish the learning algorithm for updating the weights 

of the matrix between layers L1 and L2 of the network, the following cost function, 

( )J W , is to be minimized in the mean square sense. The bigradient algorithm for 

updating of the weights can be derived by minimizing the cost function. 

  22

1 1

( )
d d

nm nm
m n

J W
 

  A B  (2.2.16) 

where nmA  and nmB  are the  ,n m  elements of matrices A  and B , respectively. These 

matrices are given as 

  (1)nm y nm
 A R J  (2.2.17) 

  (0)nm y nm
 B R I  (2.2.18) 

Both the terms of the cost function are based on the requirement, that the statistics at the 

destination must approach the statistics at the source, i.e., ( ) ( )y sn nR R  for ,..1,0n . 

The elements of weight matrix are updated according to SGSD algorithm  

L1 L2 

 jx   jy  

  
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( )J W 

  


W
W

 (2.2.19) 

where 

 
* *

* *( ) nm nm nm nm
nm nm nm nm

n mkl kl kl kl kl

J W     
         
 A A B B

A A B B
W W W W W

 

where klW  is the  k,l  element of matrix W . 

If we wish to carry out the online learning process i.e. updating of weights for every new 

vector ( )jx coming in, we remove the expectation operator 

  
 
 
 

( ) ( 1) (1)

( ) ( 1) (1)

2 ( ) ( ) (0)

x

xol

x

j j

j j

j j





 



   
       
    

y y J WR

W y y J WR

y y I WR

 (2.2.20) 

where the subscript ‘ ol ’ stands for online. Please see Appendix–B for detailed 

derivations. If weights are to be updated by batch processing then we shall carry on with 

the expectation operator, which gives the following formula for updating the weights: 

 

 
 
 

 

(1) (1)

(1) (1)

(0) (0)

x x

Abp

x x

B x x





  

 



 
   
   
   

WR W J WR
W

WR W J WR

WR W I WR  (2.2.21) 

where the subscript ‘bp ’ stands for batch processing. Please see Appendix–B for details. 

The simulations and results for the work of Fang [95] have been carried out in chapter 3 

and 4 and the comparisons have been done with our proposed algorithm.   
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Chapter 3 

Blind Equalization of Channel Using SOS With 

Coloured Sources 

 
 
 The contributions in the SOS domain are given in this chapter.  In the first part we 

used an equalizer which looks like the linear ANN as given before in Fig. 2.5, but the 

original symbols are from coloured source. We have proved that even in case of coloured 

sources if the statistics of the symbols is kept the same at the source and the destination 

by using only one correlation matrix with lag equal to or greater than one, then there 

exists a unique equalization matrix which provides us the original symbols at the output 

scaled by a complex constant of unit norm. Based on the condition for blind equalization, 

we develop a cost function, minimization of which gives us a learning algorithm. We 

have simulated two different 2-ray multipath channels, one real and the other complex, 

which shows the validity and superior performance of the new algorithm. It has been 

compared with the work of Afkhamie [111] and Valcarce [88] for coloured sources. Our 

results excel by far at low SNR and with less number of symbols, but competitive at high 

SNR and large number of symbols.  

In the second part the energy matching approach for the over sampled case is done. It has 

been proved that the energy matching of the received symbols with the source symbols 

provide the equalization. For this very proposed algorithm, we have achieved 
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convergence in one epoch. The computational cost per epoch is also minimum in 

comparison with the other algorithms of SOS domain.  

 

3.1 Theoretical Framework 

 As mentioned earlier the effect of ISI as compared to AWGN is so dominant that 

for the development of theoretical framework and its analysis, we neglect this noise. But 

in the case of simulations the noise effect is considered as well. The oversampled output 

of the channel is given as 

 ( ) ( ) 0,1,..j j j x Hs  (3.1.1) 

where     ( )jx , ( )js  and H  are defined in (2.2.5), (2.2.6) and (2.2.7), respectively. 

( )js  is drawn from 4-QAM coloured constellation with identical distribution. The auto-

correlation of the elements of vector ( )js  is given as 

 *

2 0

[ ] 1

0, otherwise
i i k

k

E s s j k


   



 (3.1.2) 

Therefore considering the vector ( )js , its correlation matrix with lag 0,  (0)sR  is given 

as 

 

2

1

0 otherwise
ik

k i

a j k i


   



 (3.1.3) 

Similarly the elements of (1)sR are given as 
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2 1

2

0 otherwise.

ik

j k i

k i
a

j k i

 
     


 (3.1.4) 

 

3.1.1 Necessary and Sufficient Condition for Blind Equalization 

with Coloured Sources 

If there exists an equalization matrix W , then the estimate of the original symbols is 

given as ˆ( ) ( )j jy s , where 

 
( ) ( )

( )

j j

j




y Wx

WHs
 (3.1.5) 

( )y nR  is the autocorrelation matrix of ( )jy , which was defined in (2.2.11). Imposing a 

certain condition on ( )y nR , we can achieve a unique equalization matrix W  by the 

following theorem. 

Theorem 3.1:  

Let 

 ( ) ( ) 0,1,2,..y sn n n R R  (3.1.6) 

H  and ( )js  satisfy (3.1.1) and its constraints. Then there exists a unique equalization 

matrix W , within a phase constant such that, 

 WH I  (3.1.7) 

for 1n , where 1  and I  is an identity matrix. For 0n , WH I  is not a 

unique solution. 
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Proof:  

Step 1---We first prove that WH I  is one of the solutions for ,..2,1,0n . 

 ( ) ( ) ( )y n E j j n   R y y  (3.1.8) 

Using eq. (3.1.5) we get 

 
( ) ( ) ( )

( )( )

y

s

n E j j n

n

  



   


R WHs s H W

WHR WH
 (3.1.9) 

Since ( ) ( )y sn nR R , therefore 

 ( ) ( )( )y yn n R WHR WH  

 ( ) ( )y yn n R AR A  (3.1.10) 

where  

 A WH  (3.1.11) 

Now  

 A I  (3.1.12) 

is obviously one of the solutions satisfying eq. (3.1.10) for ,..2,1,0n . with * 1  . 

Step2---Now we prove that WH I  is the only solution in case of 1n , to within a 

phase constant. 

Suppose there exists another solution B I  that satisfies (3.1.1). Therefore for lag 

1n  

 (1) (1)y y
R BR B  (3.1.13) 

Pre-multiplying (3.1.13) by B  and post-multiplying by B  
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 2 2(1) (1)y y
 BR B B R B  (3.1.14) 

Similarly multiplying m  times, we get 

 (1) (1) 2,3,..m m
y y m  BR B B R B  (3.1.15) 

This implies that n B B  is the solution of (3.1.5), where 1 , i.e.  je . 

Let  

 1m     (3.1.16) 

where   is a complex constant with unit norm. 

Hence  

 
1

( 1)

m

j me 

  






 (3.1.17) 

This implies 

 1m m  B B  

 m m B B  (3.1.18) 

Let 

  B C  (3.1.19) 

Therefore (3.1.18) becomes  

 0 2m m   C C  

which gives 

  1 2m m   C C I  (3.1.20) 

The above equation has two solutions, C 0  and 1m C I , 2 n  

C 0  is ruled out because it gives B 0  which cannot satisfy (3.1.10). Therefore 

 1 2m m   C I  (3.1.21) 
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For 2m  , we get  C B I  which gives us, using (3.1.17)  

 
1

(1 )j me 

 







B I

I
 (3.1.22) 

that is 

 je B I  (3.1.23) 

which is the same type of solution as given in (3.1.12). Hence W  is unique to within a 

phase constant. 

Step 3---Finally we prove that WH I  is not a unique solution in case of 0n . 

For lag 0n  we have from (3.1.10) 

 (0) (0)y s
R AR A  (3.1.24) 

Since (0)yR  is Hermitian, it has Cholesky factorization 

 
1

2 2(0) (0) (0)y y y

  R R R BB  (3.1.25) 

where  

 
1

2 (0)yB R  (3.1.26) 

From (3.1.24) and (3.1.26) 

 
  







BB AB AB

CC
 (3.1.27) 

where  

 C AB  (3.1.28) 

By the matrix factorization lemma [112] 

  BB CC  (3.1.29) 

if, and only if, there exists a unitary matrix θ  such that C Bθ . 



 33

Hence  

 AB = Bθ  

This gives 

 1A = BθB  (3.1.30) 

which is in general a solution to (3.1.10) for 0n . 

In this case A I  is a solution only for a special form of unitary matrix, which is, 

θ I . In case θ  is kept as a general unitary matrix, then 1A = BθB  is the solution to  

(3.1.10) for 0n . This may not be equal to I . ■ 

 

3.1.2 Neural Network and the new Learning Algorithm 

 The block diagram of the linear ANN is shown in Fig. 2.5. The received symbols 

sequence  jx  at the output of the channel is applied to the input layer L1 of the neural 

network as sequence of vectors ( )jx , each having length md .  

The network layer L2 provides the equalized output ( )jy , which is an estimate of the 

source symbols. In order to establish the learning algorithm for updating the weights of 

the matrix between layers L1 and L2 of the network, the following cost function, ( )J W , is 

to be minimized in the mean square sense. 

 
2

1 1

( )
d d

nm
m n

J W
 

 A  (3.1.31) 

where nmA  is the  ,
th

n m  element of matrix A . It is given as 

  (1) (1)nm y s nm
 A R R  (3.1.32) 
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The cost function is based on the requirement, that the statistics at the destination must 

approach the statistics at the source, i.e., ( ) ( )y sn nR R  for 1,2,..n  . The elements of 

the equalization matrix are updated according to SGSD algorithm  

 
( )J W 

  


W
W

 (3.1.33) 

where 

 
*

*( ) nm nm
nm nm

n mkl kl kl

J W   
     
 A A

A A
W W W

 

where klW  is the  th
k,l  element of matrix W . 

 * *( )
2( ) ( ) ( 1) 2 ( 1) ( )k l k l

kl

J W
E j x j E j x j          

A W A W
W

x x  (3.1.34) 

where ( )Η
kA  and kA  are the k th  rows of matrices ΗA  and A  respectively, and ( )lx j  is 

the l th element of vector ( )jx . The above equation can be written in the matrix form as 

 
( )

2 ( ) ( 1) 2 ( 1) ( )
J W

E j j E j j            
A W AW

W
x x x x  (3.1.35) 

Using (3.1.32) for matrix A , the updating formula for the whole weight matrix becomes 

 

   

 
 

(1) (1) (1) (1) (1) (1)

( ) ( 1) (1) (1)

( ) ( 1) (1) (1)

y s x y s x

s x

s x

E j j

E j j





 




 

        

              

W R R WR R R WR

y y R WR

y y R WR

 (3.1.36) 

  
If we wish to carry out the online learning process i.e. updating of weights for every new 

vector ( )jx coming in, we remove the expectation operator 
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  
 
 
( ) ( 1) (1) (1)

( ) ( 1) (1) (1)

s x

ol

s x

j j

j j




 

     
    

y y R WR
W

y y R WR
 (3.1.37) 

If weights are updated by batch processing, we carry out the expectation operator as 

follows 

 
( ) ( 1) ( ) ( 1)

(1)x

E j j E j j  



        


y y Wx x W

WR W
 (3.1.38) 

Thus updating of weights is given by 

  
 
 

(1) (1) (1)

(1) (1) (1)

x s x

bp

x s x





 

    
   

WR W R WR
W

WR W R WR
 

 

3.2 Phase Ambiguity in Equalized Symbols for Real Channel  

 We already know that 

 
( )

( )

i

i



y Wx

s
 (3.2.1) 

where   is the unknown complex constant with unit norm. 

Knowing W  and ( )ix , we can calculate ( )iy  defined as follows 

 *( ) ( )i iy Wx�  (3.2.2) 

Now using (3.1.1), we can write  

 * * *( ) ( )i ix H s  (3.2.3) 

With the assumption of real channel i.e. * H H   the above equation becomes 

 * *( ) ( )i ix Hs  (3.2.4) 
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and accordingly  

 *( ) ( )i i y s  (3.2.5) 

Adding  (3.2.1) and (3.2.5) we get 

 ( ) ( )i i  y y c  (3.2.6) 

where c  is a vector whose elements are twice the real part of source symbols vector, ( )is . 

Writing the equation for j th component of this equation we get  

  ( ) ( )j j
i i  c y y  

Taking magnitude of both sides and exploiting the fact that 1   and jc is real,  

 ( ) ( )j j
i i c y y  

thus  

 
 ( ) ( )

( ) ( )
j

j

i i

i i







y y

y y
 (3.2.7) 

 The above equation provides us the unity norm constant  , with an ambiguity of  . 

3.3 Simulations and Results 

 In this section simulations are done to demonstrate the validity of the proposed 

algorithm. The algorithm was tested for two different channels, one is real and the other 

is complex. The algorithms of Valcarce [88] and Afkhamie [111] were also implemented 

in the same environment for comparison purpose.  

 The real channel has been taken from Valcarce [88]. Its impulse response with 2 

sub-channels is truncated up to six symbols period i.e. 6n , and has the following 

coefficients 
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   0.1 0.12 0.43 0.87 0.12 0.04

0.15 0.45 0.76 0.21 0.15 0.11

  
    

0 5h ...h  

where ih  is i th column vector. The observation interval in this case was taken as T5 , that 

is, 5m . The complex channel taken from Fang [95] has impulse response truncated up 

to four symbol periods. It is another 2-ray channel with the observation interval of T3 , 

that is, 3m . The coefficients of impulse response for complex channel are given as  

  0.0554 0.0165 1.3449 0.4523 1.0067 1.1524 0.3476 0.3153

0.8077 0.3183 0.4307 0.2612 1.2823 1.1456 0.3610 0.2743

i i i i

i i i i

     
        

0 3h ...h

 

 For performance evaluation the Normalized Root Mean Square Inter-Symbol-

Interference (NRMSISI) was evaluated as defined in [95], given by the following 

equation. 

 
2

1

1 1
ˆNRMSISI ( )

mN

i
im

s s i
s N




   (3.3.1) 

where )(ˆ is are the estimates of input from i th trial. mN  is the number of Monte Carlo 

trials and   is given as 

 
1

1
ˆ ( )

N
k

i
k k

s

N s i




   (3.3.2) 

where N  is the number of symbols used. 

 The algorithm was tested for 100 independent Monte Carlo trials. The results of 

equalized outputs are given in Fig.3.1 for different values of SNR. The outputs of  
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Fig. 3.1  Symbols after equalization at different SNR. 
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Afkhamie, SNR=35 dB
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Fig. 3.1  (Continued) 
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Valcarce [88] and Afkhamie [111] is also given for comparison purpose. Number of 

source symbols were taken as 1000. Our results are better than that of Valcarce [88], 

especially at low SNR. Fig.3.2 indicates the variations of SER at different SNR. In this 

case the analysis was taken for real and complex channels using 1000 source symbols. 

The performance of the new algorithm is better than Valcarce [88] and Afkhamie [111] 

especially at low SNR and comparable at high SNR. 

 In Fig. 3.3 the plots of NRMSISI versus SNR are given for real and complex 

channels for 1000 symbols. For low SNR we see the new algorithm performing much 

better comparatively. Fig. 3.4 indicates the effect of changing the number of source 

symbols on SER. The set of observation is taken at SNR=25db. Again the new algorithm 

is outperforming the other two algorithms, especially for low number of symbols. In Fig. 

3.5 the performance in terms of NRMSISI versus number of symbols is given for 

SNR=25db. The new algorithm again outperforms the other two.
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Fig. 3.2  SER for real and complex channels versus SNR. 
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Fig. 3.3  NRMSISI for real and complex channels versus SNR. 
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Fig. 3.4  SER versus number of source symbols for real and complex channels. 
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Fig. 3.5  NRMSISI versus number of source symbols for real and complex channels. 
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3.4 Energy Matching Approach for Blind Equalization of 

Channels With Equal Energy Sources 

 

 In this section a simple energy–matching approach for blind equalization of possibly 

nonminimum phase channels is presented. The new approach does exploit the concept of 

oversampling and hence cyclostationarity, but does not use the matching of statistics of 

the inputs with the outputs. All the source symbols must have equal energy. Thus an 

energy constraint is imposed on the outputs. A single FIR transversal filter is used as an 

equalizer, whose weights are updated by using the energy constraint. This scheme is 

computationally light and convergence is achieved in one epoch only.  

It is well known that if there is only one channel, it is not possible to reconstruct 

the input sequence by using an FIR equalizer. Tong et al. [45] showed that oversampled 

output of the channel is cyclostationary in the wide sense, thus containing phase 

information of the channel. Later on [113] and [104] showed that multiple channel 

transmission is mathematically equivalent to oversampling, which makes oversampled 

case an FIR channel bank. Liu et al. [89] has shown that an FIR equalizer bank equalizes 

the FIR channel bank if, and only if, the composite output of the equalizer bank ky  is 

temporally uncorrelated. They have also shown that an FIR equalizer bank exists for the 

zero–forcing condition if, and only if, multichannels do not share a common zero other 

than Lz  for 0L   which represents simply the delay. The block diagram of the proposed 

algorithm is shown in Fig. 3.6.  
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Fig. 3.6  Block diagram of proposed algorithm. 

 

Our contention is that for oversampled output of the channel (equivalent to multi–channel 

case), a single FIR filter can equalize the output of the channel. There is no need of FIR 

equalizer bank as in [89], or a transformation matrix as an equalizer as in [95]–[96]. 

Moreover, a simple constraint on the energy of the output symbols of the equalizer is 

imposed which acts as its cost function for updating the weights of the FIR equalizer. The 

only drawback in this approach is that, only those constellations, whose symbols have 

equal energy, can be used. The advantage of this approach is that, the algorithm does not 

depend upon the knowledge of the statistics of the input symbols. Furthermore, the 

weights of the FIR equalizer converge in one epoch only. The results are relatively better 

as compared to some of the previous works in the literature, especially at low SNR. 

 

3.4.1 Problem Formulation for Energy Matching Technique  

In this case we have considered constellations in which all symbols have equal 

energy. We have not used statistics matching for input symbols is  and output symbols iy  

x  Transversal 
filter w  

Hy  w x  

SGSD 
algorithm 
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from the equalizer. The only constraint we have imposed on the output symbols from the 

FIR equalizer is the energy constraint. The output vector from the channel is given as 

 j jx Hs  (3.4.1) 

where H  is the Sylvester matrix given in (2.2.7), js  is the j th  vector of input symbols 

given in (2.2.6) and jx  is the j th vector of channel output given in (2.2.5). The AWGN 

noise is omitted for theoretical analysis. The following theorem provides an equalization 

condition based on the matching of the energy of the output symbols with the energy of 

the input symbols to the channel. 

Theorem 3.1: 

 Suppose H  and js  satisfy the linear model (3.4.1) and jx  is the tap input vector. 

There exists an FIR equalizer with transversal weights w  such that the output of the 

transversal filter  

 
H

j j

j

y

s





w x
 (3.4.2) 

with   a unimodular constant, if the following condition is satisfied: 

 
2 2

j jy s E 
        (3.4.3) 

Proof:  

  
 

2 H
j j jy =y y

HH H
j j

HH H
j j





w x w x

w Hs w Hs
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 
2

2

HH H
j j

H
j

js







v s v s

v s  

where energy constraint has been imposed on the last equality. In this case H Hv w H  

and js  is the leading symbol of the vector js . The last equality is only possible if, and 

only if,   0 0  ..... 0H v , where =1 . Thus an FIR equalizer does exist with 

weights w  such that H w H 1 , where  1 0.... 01 , if energy constraint is satisfied. ■  

This condition of energy constraint, used in the theorem, has been utilized to 

construct the following cost function  

  2
21

( )
2 nJ n E y   (3.4.4) 

where H
n ny  w x , while nx  is the tap–input vector at time n . The weights of the 

equalizer are updated by using the SGSD algorithm 

 
 2 2

j
j

n n
j

J

E y y






  




 



w
w

w
 (3.4.5) 

The final updating formula for w  is given as 

 
     1 T

n nn
n n e   w w w x x

 (3.4.6) 

where  

 
2

n ne E y 
 (3.4.7) 
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3.4.2 Simulation and Results for Energy Matching Approach 

 Simulations are performed to demonstrate the validity and also the superior 

performance of new algorithm over the previous work. The figure of merit is taken as 

NRMSISI defined in (3.3.1) and (3.3.2). Symbol error rate (SER) is also considered as 

another performance evaluation criterion. Simulations are performed for coloured and 

white source symbols. The coloured sources used in these simulations have the 

correlation as given by Valcarce et al. [88].  

 *

2

1

0 otherwise
i k

k i

E s s j k i


      



 (3.4.8) 

The comparison is done with Fang [95] for white case and with Valcarce [88] for 

coloured case. In both cases the source symbols were taken from 4-QAM constellation in 

which symbols  1is j   , where 1j   . The energy of each transmitted symbol is 

2
iE s . The channel is taken from Tong et al. [45] and given as 

 
-0.02788 0.04142 -0.07025 0.3874 0.3132 -0.08374

0.009773 -0.01959 0.08427 0.5167 0.01383 -0.001258

T
 

  
 

h  

The length of transversal equalizer was taken as 14 in our simulations and the learning 

constant was kept as 0.01.  

Fig.3.7 shows the plots of NRMSISI versus SNR, both, for white as well as coloured 

sources, respectively. The Fang algorithm, [95], for white case was run over 60 epochs, 

whereas, the new algorithm in both cases was run for single epoch. Source symbols in 

both cases were kept as 1000. The performance of the new algorithm is clearly better than 

the performance of the other two algorithms at high, as well as, low SNR.  
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Fig. 3.7  NRMSISI versus SNR (db), for white and coloured sources. 
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Fig. 3.8  SER versus SNR (db) for white and coloured sources. 
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Fig. 3.9  NRMSISI versus SNR (db) at different number of source symbols. 

 

Fig.3.8 gives plots for SER versus SNR for white and coloured cases. The new 

algorithm once again outperforms both the algorithms. SER drops to zero at SNR=15 db 

for the new algorithm, while for the others it drops to zero for SNR above 40 db. 

Moreover the new algorithm generates these results in one epoch only. 

Fig.3.9. shows the variation of NRMSISI against SNR with parameter as source symbols 

for the new algorithm. Different number of source symbols are taken in this case. The 

performance of new algorithm is quite acceptable even at 50 source symbols.  
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Chapter 4 

Hybrid HOS-SOS Approach for Blind Equalization of 

Channels 

 
 

4.1 Introduction 

 In this chapter a new approach to blind equalization is given which is the 

combination of approaches belonging to the two different categories. In this case the 

equalization techniques based on implicit HOS and SOS are combined together. The 

basic idea is to take advantage of the techniques of both categories by exploiting their 

positive features. 

 Generally, techniques based on SOS are supposed to be quick in performance and 

henceforth, providing faster convergence. This is due to the reason that the data 

requirement in this case is comparatively less than the case of HOS based algorithms. 

However, the channel in this case is assumed to exhibit the channel diversity, which is 

considered to be the backbone of the whole idea. To assure the solvability of the problem 

the diversified channels or sub-channels must not have a common zero. The mathematical 

complexity also increases in this case. 

 The techniques based on HOS implicitly provide Bussgang type algorithms, 

which are generally capable of providing good end results. These are relatively simple to 
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implement and there is no requirement of channel diversity. Drawbacks in this case are 

that these algorithms have slow rate of convergence and are generally limited to binary 

source symbols. Also the channel used in this case must have unit norm. 

 By combining the techniques of the above two categories, we are able to achieve a 

faster convergence without any need of channel diversity. Furthermore, there is no 

constraint on the norm of the channel in our case. Bussgang algorithm was originally 

proposed by Bellini [97] and recently modified by Fiori [98] in order to generate better 

results. Then there is an extra constraint applied on it, which is based on the category of 

SOS based algorithms. The new algorithm developed as a result was simulated and the 

results obtained demonstrate its good performance and validity. 

 The summary of earlier work has already been given in chapter 2. In this chapter 

the new algorithm is presented. Finally the extension of the new algorithm, modified new 

algorithm, has also been given and applied to white and coloured sources. Plots and 

discussion of simulation results are provided with each section. 

 

4.2 New Proposal 

We suggest two changes in the previous work – one major and the other minor. 

The proposed major change is the additional term in the cost function based upon the 

known SOS at the input and the output. We are justified to match the SOS for the input 

and the output symbols. The additional term in the cost function suggested by us is as 

follows, 

  
1

2

0
add nm

l nm

J n


 D  (4.2.1) 
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Fig. 4.1  Schematic presentation of the proposed algorithm. 

 

where 

  ( ) ( )nm y s nm
l l D R R  (4.2.2) 

where ( )s lR  is given by (2.2.10).  y lR  is the correlation matrix of 1M   output vector 

symbols ( )ny  and is given as 

       for 0H
y l E n n l n    R y y  (4.2.3) 

Hence the total cost function becomes  

      new old addJ n J n J n   (4.2.4) 

The minor change is related to the choice of adaptive activation function (AAF). 

Although, the same AAF,   tanh( )g z a bz , is used, however, we keep 1a   and make 

only b as adaptive. The reason behind keeping a  constant is that, it is simply the 

amplitude of a sigmoid function and in the case of binary inputs its value plays little role 

in discriminating between the two inputs. As far as the parameter b  is concerned, its 
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small values will keep  g z  fairly linear for wide range around the origin. As the value 

of b  rises, the sigmoid function tends to become more and more nonlinear and hence, 

more and more discriminatory between the two binary inputs. As b  , it tends to be a 

perfect signum function. Thus the updating of b  to minimize the cost function, and to 

play discriminatory role for the binary inputs, is more important and meaningful. Hence 

our AAF is taken as 

   tanh( )g z bz  (4.2.5) 

Adaptivity of only one parameter also reduces the computational complexity. 

Using SGSD algorithm, the cost function is minimized. This gives us the updating 

rule for weights of the transversal filter as well as the updating for adaptive coefficients 

of the activation function. We are considering real binary inputs and real channel. 

    
   

( ) new
new w

k

old add

old add
w

J

J n J n






  



   

  
     

w
w

w w

w w

 (4.2.6) 

Considering both the terms separately we get 

 

  2
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





  


       
 

w
w

x w
 (4.2.7) 

The above result has been derived by Fiori [98]–[99] keeping 1a  .  

The updating for the k th element of vector ( )k addw  is given as 
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where factor 2 has been absorbed in w . 
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 (4.2.9) 

where ( ) ( ( ))j g jy z . Since we are considering the real case, the hermitian H is 

replaced by transpose T . We will remove the expectation operator to consider the 

instantaneous values. The vector ( )jz  in the above equation has M  elements and is 

given as  

 
( ) ( ) ( 1) ( 1)

( )

TT T T

TT

j j j j M

j

     

   

z w x w x w x

w X


 (4.2.10) 

where ( )jx  is a vector having length equal to the number of tap weights of the 

transversal filter, N , and the matrix ( )jX  is given as  

  ( ) ( ) ( 1) ( 1)
N M

j j j j M


   X x x x  (4.2.11) 

Using the above terms, (4.2.9) can be written as 
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 (4.2.12) 

The updating for weights due to the additional cost function is given as follows 
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where 

  ( ) ( )T
ll diag le V D  (4.2.14) 

and  

  ( ) ( ) ( )Tl diag l lf D U  (4.2.15) 

( )lV  and ( )lU  used in above equations are given as  

    ( ) ( ) ( )T Tl g j g j l V X w w X  (4.2.16) 

    ( ) ( ) ( )T Tl g j l g j U w X X w  (4.2.17) 

It is straightforward to prove that (0) (0)e f . Thus 

    2 ( ) (0) ( ) (1) ( 1) (1)wadd
j j j     w X e X f X e  (4.2.18) 

The overall updating of weights due to old and additional terms in the cost function as 

given in (4.2.6) will become  
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 (4.2.19) 

Similarly the updating of  b  is achieved as follows 
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Considering the terms separately 
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where 
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where 

    2 ( ) ( ) for 0,1,..T T
lg g j l g j l l   w X X w  (4.2.23) 

Finally  

    0 1(0) (1) (1)T T
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b c Tr c Tr          D Q D R  (4.2.24) 

where  

 (0) (0) (1)  Q P R P  (4.2.25) 

where  

    ( ) ( ) ( )T T
nm n m

l j l g j l  P X w w X  (4.2.26) 

and  

    ( ) ( ) ( )T T
nm n m

l g j j l R X w w X  (4.2.27) 

and 2
0 01c g   ,  21l lc g  . 

 

The overall updating formula for  
new

b  is given as 
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 (4.2.28) 
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The expectation operators have been removed for updating purpose from (4.2.19) and 

(4.2.28), which formulate our new algorithm. 

 

 

4.3 Simulation Results for Binary Case 

Simulations are performed on two different channels, Channel-1 and Channel-2. 

Channel-1 is taken from Tong et al. [45] and Channel-2 is taken from Valcarce et al. [88]. 

Both the channels have integer time delays, which are multiples of the symbol interval T. 

The channel parameter vectors for both are given below 

Channel-1 

  1 -0.02788 0.04142 -0.07025 0.3874 0.3132 -0.08374
Th  (4.3.1) 

Channel-2 

  2 0.1 0.12 0.43 0.87 0.12 0.04
T  h  (4.3.2) 

Received symbols were obtained by convolving the binary source symbols with the 

channel parameters and adding noise subsequently. Equalization was then carried out 

using the proposed algorithm. The Fiori [98] algorithm was also implemented in the same 

environment for comparison purposes. Both the algorithms were tested with 100 

independent Monte Carlo trials. 

The algorithm is initialized with all weights set as zeros except the middle term, 

which is kept equal to 1, (0) 1b  , 0.001w  , 0.002b   and 0.5  . The output 

symbols were translated in both cases to the mean level of +1 and -1 in accordance with 

the input statistics and MSE was calculated subsequently.  
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Fig.4.2 illustrates the equalized output symbols. In this case 2000 output symbols 

from channel with SNR 20db were fed into the equalizer and plotted after equalization. 

Their values after equalization are indicated along vertical axis. The outputs of the new 

algorithm were taken after 5 epochs. The results of Fiori’s algorithm [98] are also given 

which were taken after 100 epochs in this case. 

The convergence of proposed algorithm for different number of epochs with 

different SNR is plotted in Fig. 4.3. The proposed algorithm definitely gives faster 

convergence as compared to the other work. In this case the plots for Fiori’s algorithm 

[98] are given separately since the new algorithm converges from 2 to 5 whereas Fiori’s 

algorithm [98] takes 13 epochs for channel–2. However in case of channel–1 the Fiori’s 

algorithm [98] suffers a lot and fails to reach its optimum values even after 150 epochs. 

The variation of MSE against SNR is given in Fig. 4.4, the plots are given for both 

channels. The results of the new algorithm are taken after 5 epochs whereas, the results of 

Fiori [98] are given after 150 epochs for channel–1 and 30 epochs for channel–2 for 

comparison purpose. Again the performance of the new algorithm is far better for 

channel–1 and comparable with Fiori [98] for channel–2. The reason is that channel-2 is 

normalized to one ( 1T h h ), an assumption that is made for the conventional Bussgang 

algorithm [97], whereas channel-1 is not. Contrary to this, the performance of the new 

algorithm is not affected by any such assumption and hence, is more robust to the norm 

of the channel. 
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Fig. 4.2  Values of output symbols vs. number of symbols for both the channels and 

both the algorithms.  
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Fig. 4.3  MSE vs. No. of epochs for both the channels and both the algorithms 

keeping SNR(db) as parameter. 
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Fig. 4.4  MSE vs. SNR  for both the channels and both the algorithms. 
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Fig. 4.5  MSE vs. No. of symbols for both the channels and both the algorithms. 
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 The effect of SNR on BER is plotted in Fig. 4.5. The results for new algorithm are 

taken after 7 epochs, whereas those of Fiori [98] are taken after 150 and 30 epochs for 

channel–1 and channel–2 respectively. In case of Channel-2 both the algorithms perform 

well. However, in case of Channel-1 the performance of Fiori’s algorithm [98] is 

suffering because of the same reason as mentioned above. The new algorithm is thus 

definitely more robust to different channels. 

 

4.4 Extension to Complex Coloured 4-QAM and the use of 

Energy Matching Term 

In this section an additional term in the cost function is suggested for the 

constellations having equal energy symbols. Moreover, only one correlation matrix out of 

the two, as required previously in [114], is now shown to be sufficient for SOS matching 

at both ends and achieving convergence in one epoch only. The constraint on tap-weights 

is also removed and the validity of the algorithm is tested using both white and coloured 

sources and results are compared with other algorithms of same domain. 

 

4.4.1 Proposed Modification 

In this case a new term in the previous cost function is introduced, which is 

effective for constellations having equal energy symbols. As test cases the sources used 

are binary, where  1, 1is   , and 4-QAM, where  1is j   , where 1j   . Energy 

of every symbol in 4-QAM is 2sE  . In Fig. 4.6 the output of the transversal filter z  is 

given as 



 63

 R Iz z jz   (4.4.1) 

where the subscripts R and I  stand for real and imaginary parts, respectively, 

throughout. The AAF is now complex for the QAM case, such that the output y is given 

as  

 

   
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g z jg z

g jg
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�

 (4.4.2) 

Our new term for the cost function, which is a restriction on the energy of the output 

symbols, is given as 

  2
21

2new sJ E y   (4.4.3) 

where y  is the output symbol and sE  is the energy of the symbol. 

Apart from the above modification, two more changes are suggested to the 

previous work. Firstly, we use only one correlation matrix  0sR  at the input, which is 

matched to  0yR  at the output. This reduces computational complexity without 

compromising on the convergence and accuracy of the algorithm. Secondly, the 

restriction on the norm of the weight vector 2T w w  is removed to further cut down the 

computational load. In fact, newJ  is now a strong indirect constraint, both on the weights 

and the convergence. The total cost function becomes 
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Fig. 4.6  Modified equalization algorithm. 

 

where    (0) 0 0y s D R R . Using the Stochastic Gradient Steepest Descent (SGSD) 

algorithm, the updating of the weights is given as   
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where ( )jX  is defined by (4.2.11). 

Since the updating of weights due to oldJ  and newJ  is done on a symbol to symbol 

basis, therefore, their step size is kept the same, i.e. 1 . In case of updating due to addJ , 

first M  output symbols are required to give the instantaneous value of the output 

correlation matrix. Then the updating due to addJ  is carried out every M  symbols. For 

this reason its step size is kept as different, i.e., 2 . This allows more freedom for 

improving the convergence of the algorithm.  
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The updating for b  is given as follows 

 
 

       2 21 2 1 2

b old new

b R R R R R I I I I I

b J J
b

g z g z g e g z g z g e






   


         

 (4.4.6) 

where 2
se E y  . As can be seen from (4.4.6), the updating of b  uses only oldJ  and 

newJ , and involves only scalar multiplications and additions. The updating due to addJ , as 

used in our previous section, involved matrices which were computationally expensive 

and time consuming, with little contribution to b . Therefore, this has been neglected. 

Equations (4.4.5) and (4.4.6) represent our new modified algorithm.  

 

4.4.2 Simulation and Results for Modified Algorithm 

The source symbols for the white case are taken from binary and 4-QAM 

constellations. The correlation matrix for the binary case is  0s M MR I  while for 4-

QAM it is 2 M MI , where I  is the identity matrix. In case of binary source symbols, the 

imaginary term in eq. (4.4.5) and terms with subscript I  in eq. (4.4.6) are dropped. For 

the coloured case, only 4-QAM is used but elements of  0sR , as used by Valcarce [88], 

are given as in (3.4.8). The simulations were performed on the same two channels as 

given by (4.3.1) and (4.3.2). The equalizer was implemented by choosing the values of 

constants as 1 2 0.005b      initially. They are finally tuned independently for better 

and better results. All the weights were taken to be zero initially, except for the middle 

weight, which was kept as 1. Algorithms of Fang et al. [95]  and Valcarce et al. [88]  
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were also implemented in the same environment for comparison purposes. All the 

algorithms were tested for 100 independent Monte-Carlo trials. 

Fig. 4.7 shows the variation of  SER and NRMSISI against SNR for both the 

channels with white and coloured 4-QAM sources. The number of source symbols in this 

case was set to 1000 for each algorithm. Fang’s algorithm [95], for white sources, was 

run over 60 epochs while the new algorithm was run for a single epoch. As can be seen 

from Fig.4.7, the performance of the new algorithm is superior to Fang [95]  for the case 

of white QAM sources, and to Valcarce [88] for the case of coloured QAM sources. The 

new algorithm converges at about SNR=15 db for both white and coloured sources, while 

the other algorithms converge after about SNR=35 db. 

In case of Fig. 4.8 the same simulations are repeated but for channel–2. New 

algorithm once again outperforms the two competitors for both white and coloured cases.  

Fig. 4.9 shows the results for binary source symbols. Again we have utilized both the 

channels. As can be seen from Fig. 4.9, Fiori’s algorithm [95] exhibits satisfactory 

performance for the case of channel with norm one (Fig. 4.9(b)), and relatively poor 

performance for the case of the other channel (Fig.4.9(a)) whose norm is not equal to one. 

On the other hand, the new modified algorithm is seen to perform consistently well for 

both the channels demonstrating comparatively enhanced robustness to the value of the 

channel norm. The reason for the poor performance of Fiori’s algorithm [98] on channel 

without norm one (Fig.4.9 (a)) arises from the fact that being an HOS-only based 

algorithm, its performance is limited to the channels with norm one  [101]. 
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Fig. 4.7  SER and NRMSISI vs SNR for channel–1 with white and coloured 

sources from 4-QAM. 
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Fig. 4.8  SER and NRMSISI vs SNR for channel–2 with white and coloured 

sources from 4-QAM. 
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Fig. 4.9  SER vs SNR for binary source symbols for both the channels. 
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Chapter 5 

Conclusions 
 
 

5.1 Conclusions 

The problem of blind and semiblind equalization is an on going problem as the 

speed, accuracy and volume of the communication is increasing. Depending on the type 

of application, the blind equalization utilizes the structural information of the channel and 

some properties of the input to the channel. Due to the diversity in different applications 

there are new approaches cropping up. This dissertation deals with the problem of blind 

equalization of channels, which are SISO as well as SIMO. In the literature, the 

algorithms for blind equalization fall in HOS domain or in SOS domain. We have dealt 

with algorithms of both domains and, in fact, also introduced a hybrid approach with 

much faster convergence. .  

In case of SOS domain we have tried to decrease the computational complexity 

and at the same time tried to achieve faster rate of convergence as compared to some of 

the competitors in the literature. To cut down the computational complexity, we have 

used the matching of single correlation matrix with lag one at the source and the 

destination while using the coloured source symbols as well. Its necessity and sufficiency 

was proved as a theorem. Based on this result we used a cost function to develop a 

learning algorithm for the weights of the equalizer An ANN was then implemented, 
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whose weights are updated using the proposed algorithm. Our results have shown 

robustness and convergence even at low SNR compared to the other work in the relevant 

area.  

Our next contribution in SOS domain was the algorithm based on the use of the 

energy matching term. This  is limited to those constellations, which have equal energy 

source symbols.  We constrained the symbols at the output of the equalizer to have same 

energy as that of the input symbols. This resulted in convergence in one epoch only. The 

sources for this algorithm were taken from 4–QAM constellation which are white as well 

as coloured. These results excelled by far the results given by Valcarce [88] and Fang 

[95]. 

The second part of our work was more novel and more contributing. In this case 

we used a hybrid or combined HOS-SOS approach. Keeping intact the major formulation 

of implicit HOS or Bussgang algorithm, we carried out an additional simple SOS 

matching  of the correlation matrices of lag zero and lag one of the source symbols with 

the equalized symbols. Note that no oversampling was done in this case, because it is 

fundamentally an HOS technique. With this additional constraint of statistics matching, 

the convergence took place in three to five epochs as compared to the conventional 

Bussgang algorithm by Bellini [97], which takes more than two hundred epochs to 

converge and Fiori  [101] which takes about thirty epochs. 

The combined HOS-SOS was further improved by using only one correlation 

matrix with lag zero to be matched at the source and the destination. At the same time, 

we added another constraint on output symbols, which is that, the energy of the output 

symbols must be equal to the energy of the input symbols. Although this modification 
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gave the same results as before, but the convergence took place in one epoch only. The 

limitation in this case is that we have to use constellations in which all symbols have 

equal energy.  

With these modifications the new algorithms were equally valid for the channels 

having norm other than one, which was assumed to be the fundamental constraint on the 

channels used by the Bussgang type algorithms. All this effort was carried out to achieve 

faster convergence of our results (less number of epochs) with least possible SER and at 

the same time to enhancing the robustness of the proposed algorithm, especially at low 

SNR. 

 

5.2 Future works 

The work done in SOS and HOS domain for SISO and SIMO channels may also 

be looked into for multiple input and multiple output (MIMO) channels. 

Obviously apart from ISI, the multiple access interference (MAI) has also to be 

dealt with.  

The energy matching technique in SOS domain may also be looked into as 

a strong candidate for radio channels because of its faster convergence. 

For fast fading techniques one may use space-time codes along with these 

algorithms to face the fast fading channels. 

Currently the energy matching technique is applicable to the constellations 

with equal energy symbols. In future work one could look into using the same 

technique for constellations with symbols having different energies. 



 73

The same algorithms could also be used for channels having coloured 

noise instead of white noise. 

The algorithms developed above can be extended to nonlinear as well as 

bilinear channels. 

Another important direction could be the hybrid computing,  e.g. ANN 

and Genetic Algorithms, for fast convergence of the algorithm. 
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Appendix–A 

Proof of Theorem 
 
 

A.1 Theorem: 

 Suppose H  and  is  satisfy the linear model given by (2.2.4).  is  are from 

white source and H  is a full column rank matrix. There exists a linear transformation W  

i.e. 

 ( ) ( )i iy Wx  (A.1) 

such that for 1   

 IWH  (A.2) 

if, and only if, the following two conditions are satisfied  

 (0) yR I  (A.3) 

 (1) yR J  (A.4) 

where I  is the identity matrix and J  is the shifting matrix.  

Proof:  

Necessary condition is straightforward. 

For sufficiency, substitute (2.2.4) into (2.2.12) 

 ( ) ( )i iy WHs  (A.5) 

Correlation matrix with lag zero for symbols ( )y i is given as  
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 
(0) ( ) ( )

( ) ( )

( ) ( ) ( )

( )( )

y E i i

E i i

E i i

   
   

   



H

H H

H H

H

R y y

WHs s WH

WH s s WH

WH WH

I

 

where we  have used (2.2.14) 

Letting  ,Q WH�  we get   

 HQQ I  (A.6) 

Similarly using (2.2.14) to find correlation matrix with lag one for symbols ( )y i  and 

using (2.2.13) we get  

 HQJQ J  (A.7) 

Let iQ  be the  i th  column of Q . (A.7) gives a Jordan chain of length p  ( 1m n   ). 

 1 2 2 3 1; ;..., ; 0p p p   JQ Q JQ Q JQ Q JQ  

The last equality in (A.7)  0,...,0,P IQ  

Consequently matrix Q I  i.e WH I  by using the above Jordan chain 

This implies 

 
( ) ( )

( )

i i

i



y WHs

s
 

Since Q  is a unitary matrix, it implies 1  . 
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Appendix–B 

Derivation of the terms 
 
The detailed derivations of the terms used in section 2.2.2 are carried out in this appendix 

as follows:  

Given the cost function. 

  22

1 1

( )
d d

nm nm
m n

J W
 

  A B  (B.1) 

where  

  (1)nm y nm
 A R J  (B.2) 

  (0)nm y nm
 B R I  (B.3) 

Both the terms of the cost function are based on the requirement, that the statistics at the 

destination must approach the statistics at the source, i.e., ( ) ( )y sn nR R  for ,..1,0n . 

The elements of weight matrix are updated according to SGSD algorithm  

 
( )J W 

  


W
W

 (B.4) 

where 

 

* *

* *

( )
2( ) ( ) ( 1) 2 ( 1) ( )

2( ) ( ) ( ) 2 ( ) ( )

k l k l
kl

k l k l

J W
E j x j E j x j

E j x j E j x j





          

       

A W A W
W

B W B W

x x

x x

 (B.5) 
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where ( )Η
kA , kA  are the k th  rows of matrices ΗA ,  A  and ( )Η

kB , kB  are the k th  

rows of matrices ΗB , B  respectively.  ( )lx j  is the l th element of vector ( )jx . The 

above equation can be written in the matrix form as 

 

( )
2 ( ) ( 1) 2 ( 1) ( )

2 ( ) ( ) 2 ( ) ( )

J W
E j j E j j

E j j E j j

  

  

          

       

A W AW
W

B W BW

x x x x

x x x x

 (B.6) 

Since third and fourth terms are identical, therefore their effect can be added up. Using 

(2.2.11) and (2.2.12) for matrices A  and B , the updating formula for the whole weight 

matrix becomes  

 

 
 
 

 
 
 

(1) (1)

(1) (1)

2 (0) (0)

( ) ( 1) (1)

( ) ( 1) (1)

2 ( ) ( )

y x

y x

y x

x

x

E j j

E j j

E j j












 



 
 
      
    

     
        
 

     

R J WR

W R J WR

R I WR

y y J WR

y y J WR

y y I W

 (B.7) 

If we wish to carry out the online learning process i.e. updating of weights for every new 

vector ( )jx coming in, we remove the expectation operator 

  
 
 
 

( ) ( 1) (1)

( ) ( 1) (1)

2 ( ) ( ) (0)

x

xol

x

j j

j j

j j





 



   
       
    

y y J WR

W y y J WR

y y I WR

 (B.8) 

where the subscript ‘ ol ’ stands for online. If weights are to be updated by batch 

processing, we carry out the expectation operator as follows 



 93

 ( ) ( ) ( ) ( ) (0)xE j j E j j          y y Wx x W WR W  (B.9) 

 ( ) ( 1) ( ) ( 1) (1)xE j j E j j            y y Wx x W WR W  (B.10) 

thus 

  

 
 
 

(1) (1)

(1) (1)

2 (0) (0)

x x

x xbp

x x



  

   



 
 
      
    

WR W J WR

W WR W J WR

WR W I WR

 (B.11) 

 
where the subscript ‘ bp ’ stands for batch processing. It will give more flexibility to the 

updating formula if we choose A  and B  as step sizes for the two separate terms as 

given below 

 

 
 
 

 

(1) (1)

(1) (1)

(0) (0)

x x

Abp

x x

B x x





  

 



 
   
   
   

WR W J WR
W

WR W J WR

WR W I WR  (B.12) 

where the constant 2 in the last term has been absorbed in B . The simulations and 

results for the work of Fang [95] have been carried out in chapter 3 and 4 and the 

comparisons have been made with our proposed algorithm.   
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Appendix–C 

Construction of channels 

 
 
 
 
 
 
 
 
 
 
 

Fig. C.1 Three ray multipath channel 
 

 Consider a 3–ray multipath channel with attenuation constants given as 1 , 2 , 

3  and propagation delays given as 1 , 2 , 3 . We take the propagation delay of direct 

path 1 0   and hence 2  and 3  are considered as relative propagation delays. Hence the 

impulse response is given as: 

        1 1 2 2 3 3h t t t t             

The transmitter waveform is a raised cosine pulse with roll off factor   given as: 

  
 

 
 

2 2

2

cossin
, .

41

tt
TTc t

t t
T T




 


  
 

 

where T  is symbol interval and is an integer multiple of the sampling period. 

 

 

 

 3 3,   

 2 2,   

 1 1,   
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     Fig. C.2 Overall channel 

 
 
The overall impulse response of the channel becomes: 

 
     

     

1

1 2 2 3 3

,

, , ,

h t c h t d

c t c t c t

   

       





 

    

  

 h t  is limited to some finite length given as hL nT , where n  is 4 or 6 in over case. 

Taking T  as discrete sampling time which is an integer multiple of  , sampling period, 

that is, T m  , we get discrete impulse response. 

 For Tong’s [70] channel 1 0.2  , 2 0.4  , 2 2.5T  , 6hL T  and sampling at 

twice the baud rate i.e. 2m  , we get the following values: 

 
-0.02788 0.04142 -0.07025 0.3874 0.3132 -0.08374

0.009773 -0.01959 0.08427 0.5167 0.01383 -0.001258

T
 

  
 

h  

Similarly for Valcarce channel 

  0.0554 0.0165 1.3449 0.4523 1.0067 1.1524 0.3476 0.3153

0.8077 0.3183 0.4307 0.2612 1.2823 1.1456 0.3610 0.2743

T
i i i i

i i i i

     
        

0 3h ...h

 

Figure C.3 shows the zeros plots for both of channels.  

  

 

 

    ,c t          1h t  
input output 
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Fig. C.3 Zeros plots for Tong and Valcarce channels 




