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Abstract

Underactuated nonlinear systems are always equipped with less number of actua-

tors than the degree of freedom. This feature offers certain benefits like reduction

in weight and minimum energy usage. Majority of the robotic systems (including

aerial, underwater and ground robotics) are found to be underactuated in na-

ture. Therefore, research in such system is still quite demanding and challenging.

It is also worthy to mention that the underactuation phenomenon, do not allow

the direct design of control input as practiced in fully actuated systems. The

two decades have witnessed many control methodologies which include feedback

linearization, energy-based, back-stepping, fuzzy logics and sliding mode control.

However, majority of these techniques lags behind in the robust stabilization of

this class except sliding mode oriented techniques. An extensive simulation study

of the underactuated system is carried out in the existing literature while consid-

ering the examples of translational oscillator with a rotational actuator (TORA),

flexible robots, pendulums and surface vessels.

In this thesis a simulation as well as experimental study is carried out for a class

of underactuated systems. The nonlinear model, of the underactuated systems,

is treated generally. The dynamics are either transformed into an input output

form and then an integral manifold is devised for the control design purpose or an

integral manifold is defined directly for the concerned class. Having defined the

integral manifolds discontinuous control laws are designed which are capable to

maintain sliding mode from the very beginning. The closed loop stability of these

systems is presented in an impressive way. The effectiveness and demand of the

designed control laws are proved in term of simulation and experimental results

of a ball and beam system. In addition, a comparative experimental study is

also performed between three generations of sliding mode control, which includes

the conventional first order sliding mode control (FOSMC), second order sliding

mode (SOSMC), fast terminal sliding mode (FTSMC), and integral sliding mode

(ISMC). The comparative study takes into account certain features like tracking



x

performance, i.e., settling time, overshoots, robustness enhancement, chattering

reduction, sliding mode convergences and control efforts.
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Chapter 1

Introduction

After the evolution of mankind on earth, they had started to invent things for their

ease. This desire of ease opened the door towards a never-ending cycle of research,

inventions, and discoveries. For their comfort and ease, mankind has discovered

fire and invent the wheel in the early stone-age. After the invention of the wheel

around 3500 BC, obligations raised regarding velocity/momentum of the wheel.

This urge about speed control of wheel flourishes the concept of research, which is

still continuing. Everyday sun shines with the new ideas, innovation, discoveries,

and inventions.

As humans are very ambitious to control their surrounding in accordance with

their ease and comfort, so it makes control system an essential part of their life.

In addition to this Micro-electromechanical system (MEMS) and Very Large-Scale

Integration (VLSI) makes their dreams to come true. The control system is some-

how a part of every necessary equipment which we are utilizing in our daily life,

whether it belongs to electrical, mechanical, chemical or even biological system. It

is used to obtain desired goals in hardware or in a software way. The most impor-

tant thing for control engineers/researchers while outlining the control framework,

is its mathematical model. The precision of mathematical model lead towards the

precise control of the desired systems, but unfortunately, the mathematical model

is not very accurate towards the real system. Now the role of control engineers/re-

searchers is involved to design a control system, which able to achieve robustness

1
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along with considerable effective performance in presence of model imprecisions

and external disturbances.

The classical control theory introduces in 1930’s, and it became a part of engi-

neering discipline in late 1950’s. Control engineer design and control the systems,

using graphical solutions which includes Root locus, Bode plot, and Nyquist plot.

All these methods belong to frequency domain analysis, in addition to this it uti-

lizes the open loop transfer function of the system and determines the response of

the closed-loop system. These classical methods are complicated to implement on

complex non-linear systems and don’t have the capability to handle the irrational

functions, e.g. (delays, pade approximations). If we derive the model with some

approximations from the original non-linear model, then the controller designed

on such model also has some limitations regarding control of a real system. In

result of such constraints, modern control theory comes to place.

Modern control techniques use state space representation for control systems and

develop the relationship between inputs and outputs of the system via Ordinary

Differential Equation (ODE). This method is comparatively easy to analyze MIMO

and complex systems in view of controller design of nonlinear systems. Moreover,

the design of a nonlinear controller for a non-linear system eliminate the impreci-

sion produced by the approximation of a non-linear model.

When it comes to underactuated systems,studies can be traced back to the ex-

isting and last decade. Underactuated systems by definition contain less no of

control input/actuators as compared to the degree of freedom [1]. The feature

of underactuation makes their control distinct from other nonlinear systems (also

called fully-actuated systems). Usually, the feature of under-actuation raises due

to following four reasons [2],

• System Dynamics: Dynamics of the system may also be the cause of the

rise of under-actuation phenomenon, usually seen in aerial and underwater

vehicles, (locomotive systems independent of wheels).
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• By Design: It can be deliberately introduced for reduction of cost and for

getting more practical advantages like reduction of weights in space/under-

water vehicles, humanoids manipulators.

• Actuator Malfunction: Under-actuation may raise in case of actuator

failure, e.g., in case of collision with another object [3].

• Obtaining Low-order Nonlinear Systems: Feature of under-actuation

can artificially be imposed to create low order- nonlinear systems for the

purpose of gaining insight control of higher order underactuated systems e.g.,

a ball on a beam systems [4], cart-pole systems [5], Translational Oscillator

with Rotational Actuator (TORA) [6].

This class finds fascinating applications in humanoids, aerospace systems and un-

derwater vehicles, mobile and locomotive systems. In order to operate such kind

of systems autonomously, very sophisticated control techniques are required. The

functioning of any system rely on input signal known as control input generated

by following some control design strategy or algorithm. There are many method-

ologies by which ones can generate these kinds of algorithms in control theory, but

one of them is the Sliding Mode Control (SMC) technique which is known for its

simpler design methodology and robust nature against uncertainty/disturbances

and applicability to both linear and nonlinear systems.

The fundamental thought behind this strategy is to invoke sliding mode in the sys-

tem. The occurrence of the sliding mode is associated with a constraint, termed as

a sliding manifold. The beauty of sliding mode is that it guarantees the robustness

against specific class, regarding parametric uncertainties, external disturbances

and un-modeled dynamics [7-8]. Although, it suffers from the high-frequency

oscillations across the manifold (known as chattering phenomena). This phe-

nomenon is very dangerous for the actuators health; it may lead towards system

failure in a severe case. The aforementioned control strategy may appear in many

variants, widely addressed in [9]. As these variants belong to variable structure

control, therefore, these variants have some common steps in design procedure.
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Conventionally, SMC can be implemented in two phases, reaching phase and slid-

ing phase. As illustrated by the name, all the states of the system converge to

the sliding manifold in reaching phase. In sliding phase, these states remain on

sliding manifold as far as the equilibrium position is not achieved. Reduced order

dynamics is the extra advantage of the sliding mode control, in addition, its play

momentous role regarding robustness. The states of the system become insensitive

to disturbances/uncertainties, once they reach sliding manifold.

Sliding mode shows very appealing result in real applications; the only problem

exists, is the occurrence of high-frequency switching (also calls chattering) when

the sliding mode established. Researchers have proposed different methods to

overcome chattering problem. More concerns regarding SMC includes, lack of

accuracy and considerable trade-off among robustness and chattering. In the cur-

rent era, control researchers are vigorously working towards chattering reduction,

performance improvement, and robustness enhancement.

The motivation of this dissertation is being presented in the upcoming section.

1.1 Motivation for the Work

In the current era, humanoids/robots are broadly employed in industries to re-

duced labour force, for economical manufacturing. Quite sophisticated mecha-

tronic and micro-electromechanical systems are designed to fulfill the needs of

industry and healthcare and is highly appreciated by the society [10]. All these

tasks are mainly performed via systems having fewer inputs then the outputs called

underactuated systems (UAS) The research on the UAS is quite significant and it

put forward certain challenges [11], For example:

• On the basis of current/existing control approaches, can UAS be controlled

better?

• Does any novel UAS exis? that may be able to provide a solution to our

issues in real?



Introduction 5

Aforesaid questions places this class of nonlinear system still an open area of

research. The main task in UAS systems reduced to robust stabilization and robust

tracking with acceptable performance. This objective is generally accomplished

via feedback control of the system outputs. It is noticeable that the control of this

class (UAS) is entirely different from the fully actuated systems where outputs are

monitored via equal number of inputs.

The control of underactuated frameworks are entirely different from the other

nonlinear plants where the systems operate with the same number of inputs and

outputs (so-called fully actuated systems). The control problem of fully actuated

systems is not considered to be a big issue, reason behind that is there are matured

enough control techniques available to perform exact feedback linearization on such

systems directly, and later on their control can be designed by using any frequency

domain analysis or by applying simple pole placement methodology. On the other

hand, in underactuated systems,due to its underactuation phenomenon control

does not apply directly as in fully actuated systems.The reason of underactuation

may be the system dynamics (by nature like ariel and underwater vehicles), or it

can be introduced deliberately to attain certain practical advantages like [12]:

• actuator malfunction/failure

• low complexity level

• minimal cost

• lightweight

• minimal power utilization/consumption

• low damage risk/cost (in case of an accident)

Practical applications of the underactuated system include [12]:

• In robotics; fixed and mobile robot, flexible link joints.
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• In ariel and underwater vehicles; spacecraft, space exploration system, air-

craft, helicoptors, surface vessels, ships.

• In industry; transportation and object manipulator system.

• In education institutes for research and innovation; ball and beam system,

TORA, inertial wheel pendulum, acrobot, pendubot, overhead crane, cart-

pole system.

Due to their complex dynamics and highly nonlinear nature, a system by system

approach is proposed by the researchers regarding the control design of the under-

actuated systems. Furthermore, external disturbance in combination with model

uncertainties becomes a major issue in the control of underactuated systems. To

fulfill the aforesaid requirements of the underactuated framework, SMC variants

are plugged-in. The trend of using SMC variants for the observation and control

purpose, drive the researchers to examine/analyze these algorithms for all possi-

ble improvement. Regarding SMC, chattering problem can be overcome to some

extent by applying Higher Order Sliding Mode Control (HOSMC), but HOSM is

very sensitive towards unmodeled fast dynamics. On such situations, where un-

modeled fast dynamics raises, the minute value of chattering may lead towards

total chaos (in terms of system instability). Secondly, it is difficult to implement

from a practical point of view. Therefore, the aforesaid discussion stimulates to in-

tend a control design approach that may able to provide required robustness with

minimal chattering and enhanced performance. The approach might have the ca-

pacity to meet over three issues in an optimal sense. In this paragraph, optimality

is meant to acquire acceptable performance with substantially reduced chattering

and improved robustness at a time. In this research, following assumptions are

considered to be fulfilled.

• The system output must be measurable.

• The uncertainties/disturbances(vanishing or non-vanishing) are bounded.

• The system parameters are precise/measurable.
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• The relative degree is one with respect to the sliding manifold.

In the upcoming section, research objective and scope of this dissertation is dis-

cussed.

1.2 Research Objective and Scope

The above discussion and analysis clarifies the added advantages coming from the

under actuation phenomenon along with the theoretical importance and practi-

cal applications of underactuated systems. However, their realization is limited

to practical systems because such benefits come with a higher cost, in terms of

complex control design coupled with highly nonlinear dynamical system due to un-

deractuation. In addition to this, the existence of probability towards mismatch

between real plant and mathematical model in the presence disturbances makes

the control design even more complex and challenging. Therefore designing robust

nonlinear control in the presence of aforesaid constraints (mismatched/uncertain

mathematical model, matched and unmatched disturbances, which are more com-

mon in real-world scenario) is a considerable imperative control problem.

Sliding mode control [13], is the only robust design technique which has the ca-

pability to provide robustness and cater for unknown internal and external dis-

turbance in the presence of model uncertainties for nonlinear systems. Other

approaches developed for such systems include partial feedback linearization [14-

15], passivity-based approach [16], backstepping [17], IDA-PBC [18], fuzzy control

[19] and optimal control [20-22], these approaches have certain limitations but

most important of them is the lack of robustness. Moreover, conventional SMC

[23-25] and their higher order variants [26-27], suffers the high-frequency oscilla-

tions (known as chattering) which makes practical applicability of such controllers

nearly impossible.

The research objective in this work is to find robust control design for the class

of underactuated system via sliding mode. The proposed controller should be,
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robust enough from the very beginning, suppress chattering, improve performance

and can be applicable to the underactuated system that can be converted in to

canonical form. The generic model of the underactuated systems is considered

for the said propose includes the systems like ball and beam, cart-pole system,

overhead crane, pendubot, TORA, acrobot. Finally, the framework is practically

implemented and tested on the ball and beam system being a benchmark under-

actuated systems.

The scope of this research can be further extended in future, which includes the

addition of such systems/models which are not include in considered class due to

certain design limitations.

In the upcoming section, main research contributions are listed, in the form of

control law development (for robustness enhancement, performance improvement,

and chattering attenuation).

1.3 Research Contribution

The contributions made in this manuscript are both theoretical and experimental

in its nature. A robust control strategy is proposed for UAS. To design the control

strategy, the system needs to be in the specific formate, i.e., input-output form.

To get the system into this format, some transformations will be needed. Once the

system is obtained in the said format an Integral Sliding Mode Control (ISMC) law

is proposed for the tracking purpose to ensure the robust tracking performance.

The closed loop stability is proved, and the designed control law is experimentally

tested on a ball and beam system. In addition, a comparative experimental stud-

ies of the conventional First Order Sliding Mode Control (FOSMC), Second Order

Sliding Mode (SOSMC), Fast Terminal Sliding Mode Control (FTSMC), and Inte-

gral Sliding Mode Control (ISMC) is also performed. The comparative study take

into account certain features like tracking performance i.e., settling time, over-

shoots, robustness enhancement, chattering reduction, sliding mode convergences
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and control efforts., These contributions are quite significant and upto the mark.

The following contribution, in term of research papers, is made in this thesis.

• Robust Control of Underactuated System: Higher Order Integral Sliding

Mode Control [28].

• A Comparative Experimental Study of Robust Sliding Mode Control Strate-

gies for Underactuated Systems [29].

1.4 Thesis Structure

A short outline of the substance contained chapter wise in this dissertation is given

below.

Chapter 1 presents the introduction of this dissertation which includes a brief

discussion of sliding mode control literature, motivation for this work, research

contribution and thesis organization.

Chapter 2 explores the historical evolution of the underactuated systems. The

central theme of this chapter is to provide an overview regarding remarkable work

done on underactuated systems with respect to control. In addition, it also reveals

the step by step progression takes place in SMC along with its merits and demerits.

Chapter 3 reflects some necessary mathematical concepts, which seems to be nec-

essary for the better understanding of future chapters. This chapter effectively

presents the fundamental theory regarding SMC, Second Order Sliding Mode Con-

trol (specifically, super-twisting sliding mode control) SOSMC (STW), Smooth

Sliding Mode Control (SSTW), ISMC and FTSMC.

Chapter 4 contains the many contributions to this thesis, starting from the devel-

opment of a controllable canonical form of a given nonlinear model of the class

of underactuated nonlinear systems. The main claim of this chapter is the devel-

opment of the Robust Integral Sliding Mode Control (RISMC) protocol for the
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class of underactuated nonlinear system. The stability analysis is carried out via

Lyapunov’s approach. In addition to this, RISMC algorithm is practically imple-

mented on Ball and Beam system (underactuated nonlinear uncertain) system.

Chapter 5 contains the extended form of the contribution presented in chapter 4.

In this chapter, comprehensive comparative analysis in term of settling time, over-

shoots, robustness enhancement, chattering reduction, sliding mode convergences

and control efforts is performed with five sliding mode control strategies i.e., con-

ventional FOSMC, SOSMC, FTSMC, ISMC. Aforementioned control techniques

are implemented on a Laboratory benchmark to observe the characteristics of each

control technique very closely.

Chapter 6 conclusion of this dissertation is presented in this chapter along with

some future directions.

1.5 Summary

This chapter has provided an overview of this dissertation. In the next chapter

literature survey with respect to the underactuated systems are presented.



Chapter 2

Literature Survey

This chapter illuminates the historical perspective of different control strategies

and algorithms exercised regarding the control of underactuated systems by the

research community. The maturation from conventional control strategies to SMC

initiated an everlasting research cycle which diversified itself toward different vari-

ants of SMC like, HOSMC, Terminal SMC, ISMC, FTSMC, etc.

The control design of the underactuated systems remains in one of the active fields

for control engineers/ researchers in the existing and the last decade. Underactu-

ated system are the systems with fewer actuators (i.e., controls) then configuration

variables [5], this property makes it quite unique from other systems. These sys-

tems are used in order to have a minimum weight, cost, and energy usage while still

retaining the key features of the underactuation. Note that, in case of fully actu-

ated systems, there exists a broad range of design techniques in order to improve

performance and robustness. These include adaptive control, optimal control,

feedback linearization, and passivity-based control strategies, etc.

However, it may be difficult to apply such techniques in a large class of under-

actuated systems because sometimes these systems are not linearizable using

smooth feedback [30] also due to the existence of unstable hidden modes in some

such systems. Brockett [31] necessary condition for the hold of stable, smooth

feedback law is also not satisfied by the majority of under-actuated systems. This

11
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modern era has a wide application of these underactuated systems which may be

able to operate manually/automatically.

In recent years many control methodologies have applied for stabilizing the un-

deractuated systems to full-fill our needs, which includes: feedback linearization

technique, energy-based techniques, back-stepping, fuzzy logic and sliding mode

control techniques.

2.1 Partial Feedback Linearization (PFL)

PFL (Partial feedback linearization technique [14-15]) provides a natural global

change of coordinates that transforms the system into strict feedback form. Fol-

lowing two PFL approaches are used for underactuated systems namely,

• Collocated PFL

• Non-collocated PFL

2.1.1 Collocated PFL

The linearization scheme globally transform all UAS of some kind to fully actu-

ated systems is laid out by collocated PFL approach. Application of this control

technique includes the control of acrobot [31], capsule system [32], double pendu-

lum cart [33], three link- pendulum [34], pendulum driven cart [35] and cart-pole

system [36].

Example

For better explanation of PFL approach, Lagrangian based model of inertial wheel

pendulum (IWP) is presented in equation (2.1), [15].
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Figure 2.1: Schematic representation of IWP (Inertia Wheel Pendulum [15]).

m11(q)q̈1 +m12(q)q̈2 + h1(q, p) = 0

m21(q)q̈1 +m22(q)q̈2 + h2(q, p) = 0

(2.1)

From above equation, one may write equation (2.2)

q̈1 = −m−1
11 (q){m12(q)q̈2 + h1(q, p)} (2.2)

By replacing the value of q̈1 by the above equation, second actuated dynamical

equation of (2.1) can be rewritten as:

(
m22(q)−m21(q)m−1

11 (q)m12(q)
)
q̈2 +

(
h2(q, p)−m21m

−1
11 (q)h1(q, p)

)
= ρ (2.3)

By applying the control input displayed in equation (2.4), above equation can be

linearizeable.

ρ =
(
m22(q)−m21(q)m−1

11 (q)m12(q)
)

(τ +
(
h2(q, p)−m21m

−1
11 (q)h1(q, p)

)
) (2.4)

In above equation (2.4), new control input is represented by τ . Therefore, equation

(2.1) can be rewritten as follows:
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m11(q)q̈1 + h1(q, p) = −m12(q)τ

q̈2 = τ

(2.5)

More simplified version of above equation (2.5) can be shown in following equation

(2.6), shown below:


q̇1 = p1

ṗ1 = f(p, q) + g(q)τ

q̇2 = p2ṗ2 = τ

(2.6)

where f(q, p) = −m−1
11 (q)h1(q, p)

g(q) = −m−1
11 (q)m12(q)

(2.7)

It is worthy to mention, in actual collocated linearization technique, linearizes the

actuated degree of freedom, in addition decouples it from the unactuated Degrees

of Freedom (DoF).

2.1.2 Non-Collocated PFL

Non-collocated PFL presents a linearization procedure for the un-actuated con-

figuration variables, this procedure also valid for a specific class of UAS [11].

Olfati-Saber [37] also works on non-collocated PFL for UAS with respect to sym-

metry property. Applications of aforesaid technique includes rotating pendulum

[37], surface vessel [38], pendubot [39] and one link robot [40].

Example

By continuing above example (system shown in equation 2.1) for non-collocated

PFL approach [15], if one wants to linearize q1, the control input is selected as
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ϑ = −m−1
11 (h1 +m12)τ (2.8)

That becomes

q̈1 = ϑ

q̈2 = −m−1
12 (q)(m11(q)− h1(q, p))

(2.9)

Therefore, state space model of IWP, can be shown as



q̇1 = p1

ṗ1 = ϑ

q̇2 = p2

ṗ2 = ϑ−f
g

(2.10)

From the mathematical model displayed in (2.10) that, non-collocated linearization

yields decoupling of unactuated DoF. Aforesaid techniques are inapplicable on flat

underactuated systems due to existence of non-zero gravity term (Gu(q) 6= 0).

2.2 Passivity Based Control (PBC)

The idea behind this methodology is to regulate the energy of the system in ac-

cordance with the desired equilibrium state. Passivity is the imperative aspect of

underactuated systems. Feedback control law invariably exits for

Ė(q, q̇) ≤ 0 (2.11)

For set point regulation problems mostly used technique is PBC, this strategy

is commonly applied on two link manipulators [16], biped robot [41], two serial

pendulum cart [33], TORA [6], rotating pendulum [42], two parallel pendulum

cart [43] and cart-pole [44]. Narrow range of application and only applicability
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to systems having less than two relative degrees are the limitations/drawbacks of

passivity based approach [11].

2.3 Backstepping

To counter the limitation of passivity-based control (PBC), the back-stepping

technique is proposed to transform the system into recursive form in which PBC

can easily be applied. The principle of back stepping is displayed by following

figure [17]:

τ
1

α
1

α
2

α
P

α
0

S
1

S
2

S
P

τ
2

τ
P

Figure 2.2: Scheme of backstepping [17].

In the Fig. 2.2, virtual system are represented by Si (i = 1,2,· · · p) with r(relative

degree) = 1. In back-stepping technique actual system is finished as a last member

of sequence. For each Si, r trims to one by choosing signal αi−1 as virtual input

and control law is obtained u = αp.

This approach is considered to be quite impressive for global stabilization of low

degree of freedom underactuated systems [11]. However, computational complex-

ities increase with the increase in the DOF. In addition, the applications of the

back-stepping technique towards practical systems are unrealistic, due to increase

in complexity level as DOF increases [11, 29]. This technique is applied to control

surface vessel [45-46] and VTOL aircraft [47-48].
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2.4 IDA-PBC and Controlled Lagrangian

Methods

Generally, two approaches are followed to illustrate the behavior of dynamical sys-

tems (namely Hamilition approach and Euler-Lagrange approach). As there are

two passivity based methods for the control of underactuated systems: IDA-PBC

(interconnection and damping assignment passivity-based control) [18] and con-

trolled Lagrangian [49-50]. Both Hamilition/Lagrangian based passivity schemes

based on two phases:

• Shape the Hamilition/Lagrangian to the required form, along convenient

equilibrium states with desirable structural feature via control input and

• next is to implant damping in the system, to make sure the passivity of the

system.

Injection of damping term leads us to a new world of control by discovering sliding

modes control.

2.5 Fuzzy Control (FC)

Generally, disproportion has been seen in human and machine control. It exists

due to the human factor, which leads toward imprecise, uncertain and fuzzy but

the fusion of machine with computer portrays very fascinating and accurate results.

An fuzzy control (FC), make machines more intelligent and make them capable of

taking decisions in a fuzzy manner like a human.

This technique is proposed by Zadeh [19], it is premeditated to be a non-mathematical

approach used for underactuated systems that are not adequately modeled or well

defined [51]. Takagi-Sugeno modeled based approach is very famous regarding FC.

Figure 2.3 shows fuzzy control scheme [11]. From set-point regulation and tracking

point of view, FC applied to underactuated systems referred in [51-54].
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Figure 2.3: Scheme of Fuzzy Control [11].

2.6 Optimal Control

The objective of optimal control is to find control law having the ability to reduce

(or maximize) cost function.

J =

∫
f(q(t), q̇(t), u(t)).dt (2.12)

Optimization leads us to two type of control problems, energy-optimal problem,

and time-optimal problem. Relevant work concerning energy optimization and

time optimization are reported in [20-21], [22] and [55] respectively.

Truthfully saying, aforesaid control scheme stills considered as control problem

rather than an independent control methodology [11].

2.7 Sliding Mode Control

Uncertainty is a pervasive and still stubborn issue for the control of UAS. As there

remains a gap between practical systems and there theoretical models, which leads

us to model uncertainties, unmodeled dynamics and parameter variation/uncer-

tainties. In earlier, to overcome the issue of uncertainty techniques namely, robust

control [13] and adaptive control [56] were used. Owing to the nature of aforesaid

two strategies, robust control is only applicable towards small uncertainties [57],

on the other hand, adaptive control is able to cater broad spectrum of parametric

uncertainties but sensitive towards unstructured uncertainties [11].
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To counter these constraints, variable structure controller known as SMC gains

extensive recognition from engineers/researchers in recent years. SMC provides

remarkable system performance against disturbance rejection, model imperfection,

and uncertainties. As control law designed in the result of SMC is discontinues

in nature, control input enforce the system to slides along a pre-defined surface,

according the system produces the desired behavior via confining its state to the

surface.

SMC strategy is found to be very successful with respect to underactuated systems,

their applications can be found in inverted pendulum [5], surface vessel [23-24], he-

licopter [25], ball and beam [28], satellite [58], overhead crane [59], underactuated

fuel cell system [60], underactuated biped robot [61] and TORA [62]. Meanwhile,

some researchers/engineers also devoted themselves to develop a universal SMC

for the underactuated systems [63-65].

Although, SMC grew very rapidly from last two decades, but it suffers from a

high oscillation phenomena (known as chattering). In real applications, it is quite

dangerous for the mechanically moving parts along with actuators health, and it

also increases the wear tear of the actuators, it may also lead towards total system

failure. This is the limitation in the implementation of SMC in sensitive practical

systems.

2.7.1 Higher Order Sliding Mode Control (HOSMC)

Regarding the minimization of chattering phenomenon three approaches are listed

in the literature. First, the use of saturation control instead of discontinuous one.

It ensures the convergence to a boundary of the sliding manifold [26]. However,

the precision along with robustness of the sliding mode is partially lost. The

second one is the use of observer-based approach [27], it leads toward degradation

of robustness. Levant [66] proposed a third approach, high order sliding mode

control (HOSMC). It consists derivatives in the sliding variable system. It also

maintains the robustness of the system, especially the SOSMC. The drawback
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present in HOSM is its sensitiveness toward unmodeled fast dynamics. On such

scenario, the minute value of chattering may lead towards chaos regarding system

stability.

A majority of the non-linear system presents very sensitive response towards very

minimal disturbance, even in matched nature, during reaching phase. This re-

sponse of the system sensitivity during the reaching phase may results in the

system instability. Thus the need arises to have a controller which must be free

from reaching phase, named as integral sliding mode control [7].

2.7.2 Integral Sliding Mode Control (ISMC)

It is worthy to mention that SMC and HOSM cannot guarantee the invariance

property in the necessary reaching phase. Therefore, to mitigate this threat, an

integral sliding mode based strategy was proposed in [7] and[28], which estab-

lished sliding mode without reaching phase. Additionally, it also neglects the

uncertainties and disturbances which effects the system and causes unstableness

during reaching phase [67]. Another important feature is the same order of mo-

tion of equation as the order of the original system, which results robustness of

the system is granted throughout an entire response of the system starting from

the original time instant [7]. ISMC has a broad scope of applications in robotics,

electric drives, electromechanical and underactuated systems. Limited work has

done on the ISMC from an underactuated system point of view.

2.8 Research Gap and Challenges Regarding

Underactuated Systems

As the importance of underactuated systems are very much evident in the cur-

rent technological era in light of its diverse health care, industrial and military

applications. In this field, new dimensions could be explored in light of [68-71] for
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set point regulation. Similarly, in tracking control, [63] and [72] can be developed

further. Modeling with friction is also remained ignored in the mathematical mod-

eling of under-actuated systems, although it plays a critical role in many precise

applications [73-74]. Therefore, aforesaid field is not fully matured yet and still

considered to be the most active field of research by the control community.

Since the practical system varies in structure and dynamics, according, the nature

of underactuated system varies from system to system. Mostly, approaches listed

in literature are system specific approaches which also lacks robustness. SMC is

robust, but due to the existence of reaching phase, it is vulnerable towards dis-

turbance rejection. If we increase the order of sliding mode, robustness decreases.

Hence, there is a need for improvements in the design to, eliminate reaching phase,

ensure robustness from the very beginning, suppress chattering and ensure finite

time convergence.

Control algorithms are designed based on two options. One is to adopt the non-

linearities and second is to reduce the system into the lower dynamical model.

However, these conditions are not practically possible due to hardware limita-

tions (e.g., actuation power limitation). Challenges are basically divided into two

categories, based on their nature, i.e., theoretical and practical challenges. Both

categories are discussed in the upcoming section.

2.8.1 Theoretical Challenges

Currently, there are two theoretical challenges faces by control community with

respect to underactuated systems. First regarding controllability and stabilization,

secondly is related to configuration characteristics of underactuated systems.

In earlier work, it is shown that controllability of system rely on linearization

property [75], it means the system can only be controllable if its linearization at

an equilibrium point is controllable. Luca et al. [76] provide the solution to the

aforesaid constraint by suggesting the time-varying (or discontinuous) feedback

controller for stabilization as time-invariant continuous feedback control is not
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applicable to underactuated systems [77]. This is the reason for discontinuous

control like SMC have got great interest by the researchers.

Global stabilization has achieved by Xu et al [63], for the class of underactuated

system using discontinues feedback control on systems in cascade form. Olfatai

[73] has also done significant work, by proposing the explicit change in coordinates

that helps to transform numerous classes of underactuated systems into cascade

non-linear systems with structural properties. Still, the window of opportunity is

present in the set point regulation problem in light of [16], [39], and [78].

2.8.2 Practical Challenges

Practically underactuated systems remains challenging mainly due to following

four aspects,

• regarding industrial needs

• DOF in complex underactuated systems

• fault detection and control

• networked underactuated systems

According to industrial needs, underactuated systems required autonomous oper-

ation in an unstructured and possibly dynamic changing environment [79]. As the

degree of freedom and complexity increases the reliability of the system decreases.

These systems are unable to work in the hazardous or unsafe environment because

the cost of damage and loss rate are very high. New tools are required to address

robustness issues [80]. Sensor failure may also result as missing feedback signal,

affecting the overall tracking problem of the system. Similarly, actuator failure

converts the fully-actuated system into the underactuated system. Both problems

are well thought by the researchers and recommendation have been made regard-

ing fault detection in such systems [81-82]. If the network is introduced in a loop

and if communication signal (data packet) is delayed or network is disconnected.
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It may lead towards poor performance of the system, in such case predictive con-

trol is required. Hence, there is a gap present with respect to practical aspects of

underactuated systems, which needed to be addressed.

2.9 Summary

In this chapter, some historical perspective of different control strategies exercised

on underactuated systems are highlighted. These techniques includes, partial feed-

back linearization, passivity-based control, backstepping, IDA-PBC, fuzzy control,

optimal control, and sliding mode control. Most of the aforementioned approaches

are system based approaches. It reflects the need to develop the robust control

approach for the class of underactuated systems. In light of this chapter, it can

be concluded that sliding mode control approach can fulfill the aforesaid require-

ments to maximum extent. The only serious drawback lies in SMC strategy is

the high-frequency switching (known as chattering), due to discontinues function.

Complete removal of the chattering phenomenon is not possible; however, it can

be minimized. This chattering phenomenon is further analyzed in the upcoming

chapters.

In the next chapter, some mathematical preliminaries are presented, which are

seems to be necessary for a better understanding of this dissertation.
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Mathematical Preliminaries

If we study the history, there always remains an invisible war between humans

and their surrounding (it may be natural or artificial). It is in human’s nature

to make is surroundings in his favor like, e.g., warm clothes are associated with

cold weather, long distance associated with ground or aerial vehicles, self-defense

associated with weapon industry. However, this modern era is fenced by a lot of

artificial surroundings which includes sophisticated equipment/ devices like, nu-

clear reactor, humanoids, advanced automotive, etc. As this kind of equipment

increases, a natural question regarding their control may arise. This need and

kind of control expended too many domains which include, biological, mechanical,

chemical, electrical and social control systems. This urge to get control of their

surrounding/environment by the mankind give birth to the multidisciplinary sub-

ject, today is pronounced as “control systems.” A “control systems” is a piece of

hardware or software, devise to accomplish a specified task. It can be said that

the “control systems” is a framework responsible for deploying available recourses

intelligently to meet our requirement/demand. The need for control engineers/re-

searchers are also raised due to imperfections in mathematical models.

From analysis and design point of view, the subject of the control system can

categorize into two broad streams, i.e., linear control system and non-linear control

system. Linear control system theory deals with linear approximations of nonlinear

model and controller has been designed using linear control algorithms in both

24
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frequency domain (Bode Plot and Root Locus) and time domain (State Space).

Elseways, non-linear control system theory is preferred for the nonlinear models

to handle the mathematical imperfections and model uncertainties via nonlinear

controllers, e.g., sliding mode control variants, back-stepping and input-output

linearization.

The rest of this chapter is organized in such a way that, various terminologies

regarding sliding mode control (including examples) are described in Section 3.1.

Section 3.2 portrays the introduction of higher order sliding modes (with super-

twisting and smooth super-twisting SMC). Section 3.3 displays about the integral

sliding mode control. Section 3.4 describes general theory about fast terminal

sliding mode control. Section 3.5 summarizes this chapter.

3.1 Sliding Mode Control

S.V. Emelyanov (a Russian theoretician) and his fellow researchers conclude the

conventional state feedback methodology lacks in providing effective robustness

against nonlinearities. Thus they have developed a variable structure control

(VSC) in a mid-nineteenth century [83 - 84]. This variable control structure (so-

called sliding mode control) produces very flourishing results in connection with

simple state feedback control law. The sliding mode control (see for more detail

[7]) is always considered as an effective and efficient approach in control systems

because of its invariance in sliding mode, i.e., it results in robustness against un-

certainties in sliding mode. The design framework of SMC usually supports r =1

systems.

Conventionally, SMC can be implemented in two phases Reaching Phase and Slid-

ing Phase. The most promising aspect regarding SMC is its imposition towards

system states on pre-defined surface also known as a sliding surface. This is called

reaching/attraction phase. The manifold is constructed by some hyperplane or by

the intersection of the hyperplanes in the state space which are termed as switching
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surfaces. Due to the discontinuous nature of this controller, it can switch between

two different system structures (theoretically with infinite frequency) along this

switching surface. In result of this switching, a type of system motion keeps in

a place called sliding modes. Ones the system states lie on switching surface,

it starts sliding toward the equilibrium, it is remembered as sliding phase [85].

However, this switching causes the well-known chattering phenomenon, which is

very dangerous for the actuators of the system. On the other hand, SMC is also

sensitive towards the disturbances and the uncertainties in the reaching phase.

To overcome these problems, many strategies are proposed, e.g., HOSMC or use

of saturation function instead of signum function is suggested for suppression of

chattering phenomenon. Similarly, ISMC is proposed to counter the issues dur-

ing reaching phase. By adoption, any of the aforementioned strategy we have to

accept with some compensation, it will be under discussion in the coming units.

Consider a Single Input Single Output (SISO) nonlinear system [86], in state space

form presented in equation (3.1).

ẋ = f(x, t) + g(x, t)ρ

y = h(x, t)

(3.1)

where xεRn representing the states vector, and scalar control input ρ belongs to

R. It is also considered smooth.

By assuming, y(i−1) = ξi for i = 1, 2, 3 up to relative degree n, the system shown

in (3.1) can be transformed in to following system



ξ̇1 = ξ2

ξ̇2 = ξ3

...

ξ̇n = ϕ(ξ) + γ(ξ)ρ

(3.2)
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For the implementation of SMC two significant steps are needed, first one is the

selection/designing of sliding surface and the second one includes the designing

of control law. To design a control law, at first step a switching manifold of the

following form is considered.

σ(ξ) =
n∑
i=1

ciξi (3.3)

Computing the time derivative of (3.3), one may have

σ̇(ξ) = c1ξ2 + · · ·+ cn(ϕ(ξ) + γ(ξ)ρ) (3.4)

The control law based on SMC is always composed of two components, i.e., an

equivalent control component, and a discontinuous control component. Mathe-

matically, it can be expressed as follows:

ρ = ρequivalent + ρswitching (3.5)

The reachability condition is satisfied, if the Lyapunov function shown in (3.6),

complied the condition laying in (3.7).

V =
1

2
ρ2(ξ) (3.6)

V̇ = σ(ξ)σ̇(ξ) ≤ 0 (3.7)

Aforesaid condition ensures the enforcement of sliding mode asymptotically.

Example

Consider nonlinear model of a simple pendulum [87].

ml2θ̈ +mgl sin θ = ρ (3.8)
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where m, l, g is the mass, length and force of gravity, respectively, θ represents

the pendulum position where ρ is the control input. Let x1 = θ and x2 = θ̇, the

state space model of the system can be written asẋ1 = x2

ẋ2 = g
l

sinx1 + 1
ml2

ρ

(3.9)

In SMC framework step one is to design the sliding surfaces i.e.

σ = c1x1 + x2 (3.10)

By taking, time derivative of the sliding variable (3.10), we get

σ̇ = c1ẋ1 + ẋ2 (3.11)

By putting the value of ẋ1 and ẋ2 from (3.9) to (3.11)

σ̇ = c1x2 −
g

l
sinx1 +

1

ml2
ρ (3.12)

For equivalent control put σ̇ = 0 in equation (3.12)

ρeq = ml2
(
−c1x2 +

g

l
sinx1

)
(3.13)

and

ρsw = −ml2Ksign(σ) (3.14)

Moreover, the sliding mode control can be given as

ρ = ρeq −ml2Ksign(σ) (3.15)

In above equation (3.15) K should be greater than the upper bounds of the un-

certainties present in the system. For system (3.9) and surface (3.10) reachability

condition must be satisfied (existence of sliding mode), if Lyapunov candidate
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function V = 1
2
σ2, satisfy the condition V̇ = σ̇σ < 0. Note that incase of fully-

actuated systems control design is relatively easy due to availability of broad range

of design techniques as compared to under-actuated systems.

3.2 Higher Order Sliding Mode Control

(HOSMC)

HOSMC is the advancement of traditional SMC theory presented by Levant (1993),

Emelyanov (1996) and Fridman (1996) respectively [88-90]. If one should keeps the

function smooth (σ = 0), then all of its continuous derivatives of σ in the region of

sliding mode is called sliding order ‘r’. The rth order sliding mode will be ouccer

if a control law with non-linear sliding variable drives not only the sliding variable

but also its r − 1 consecutive derivatives toward manifold in finite time and stays

there eventually, in the presence of bounded disturbance [88], i.e:

σ = σ̇ = σ̈ · · · · · · = σr+1 = 0 (3.16)

FOSMC is the variable structure system. Therefore, it has some limitations like

high-frequency oscillations, which originates chattring effect and the order of rel-

ative degree should be one. To overcome this chattering phenomenon different

solutions are proposed at different times. One of the solution is the use of satura-

tion function instead of sign function, but it degrades the robustness.

 

Figure 3.1: Sliding order along with manifold dimension [102].
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HOSM can be used to overcome the limitations of standard SMC without losing

the robustness. It relaxes the requirement of relative degree and reduces the

chattering. This further lead toward not only σ = 0 but also its time derivative

must be zero like σ = σ̇ = 0 is known as second order sliding mode control. Increase

in sliding order causes decrease in manifold dimensions. This phenomenon can be

seen in the Fig. 3.1, first figure on the left represents the conventional or FOSMC

while figure on the right displays the SOSM resulting the reduction in the sliding

manifold dimensions.
 

Figure 3.2: SOSM Control Trajectory [88].

Second order sliding mode control is the most popular sliding mode control among

researchers due to its vast practical applications. The main problem associated

with it is the requirement of increased information like availability of σ and σ̇

(higher derivates). The second order sliding mode trajectory is shown in Fig.

3.2. Other variants of second order sliding mode control includes, Super Twisting

Algorithm (STA), Smooth Super Twisting Algorithm (SSTA) and Real Twisting

Algorithm (RTA).

3.2.1 Super Twisting Algorithm (STA)

As previously discussed, for SOSM the knowledge of σ and σ̇ both are requisite.

STA is a unique control algorithm in its class which requires only the information

of σ [88].
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Figure 3.3: Phase portrait for Super Twisting Algorithm (STA) [88].

In other words, to divine the STA, derivation of σ is not required. Figure 3.3 shows

the phase portrait of STA. The main advantage of STA is that it is SOSM based

and non-requirement of sliding surface derivatives. Its practical implementation

is comparatively easy. However, one must be clear that the robustness in this

technique decreases, as the order of sliding mode increases.

ρ is chosen according to the strategy of [91] as follows:

ρi = −k1sign(σi)|σ1|
1
2 − k2σi + ωi

ω̇i = −k3sign(σi)− k4σi

(3.17)

and ki are positive scalar gains where i = 1· · · p is obtained. If ki are chosen

according to [91], Then the enforcement of sliding mode against σi = σ̇i = 0 can

be ensured in finite time. However, if p = 1 then k2 = k4 = 0 is usually selected

in (3.17), it will appears as follows [91]:

ρ = −k1sign(σ)|σ| 12 + ω

ω̇ = −k3sign(σ)

(3.18)
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3.2.2 Smooth Super Twisting Algorithm (SSTA)

As much the conventional sliding mode is fascinating for its robustness, meanwhile

it is also experience the high-frequency chattering. The beauty of HOSM is the

conservation of the features of SMC while reducing the chattering effect. How-

ever, HOSM control is sensitive toward unmodeled fast dynamics [92] as a result

of which chattering will appear eventually sooner or later in the closed-loop sys-

tem. The problem associated with the second order sliding mode controllers is the

performance degradation, which is coped by the use of smooth SOSMC framework

presented in [92-93]. This smooth SMC framework guarantees the effectiveness in

many sensitive applications and provides chatter-free smooth control action. The

structure of smooth STA (SSTA) is given in the following equation.

ρ = −k1|σ|
µ−1
µ sign(σ) + z

ż = −k2|σ|
µ−2
µ sign(σ)

(3.19)

Collectively it can be representing as

ρ = −k1|σ|
µ−1
µ sign(σ)−

∫
k2|σ1|

µ−2
µ sign(σ) (3.20)

In above equations (3.19) and (3.20) µ ≥ 2. It is worthy to mention here, if µ =

2 the SSTA reduces to conventional STA, where k1, k2 are kept strictly positive

number.

3.3 Integral Sliding Mode Control (ISMC)

Integral Sliding Mode Control (ISMC) used to avoid chattering and reject un-

certainties [85]. The beauty of integral sliding mode control is its freeness from

reaching phase which considered to be the necessary part in conventional sliding

mode control. It means sliding occurs from the very beginning, which enhances

robustness. In integral sliding modes, the system operates with full states while in
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conventional sliding mode order reduction occur [85]. It also neglects the uncer-

tainties and disturbances, which effects the system and causes instability, during

reaching phase. A simple introduction of ISMC is given below.

Consider the nominal system

ẋ = f(x, t) + g(x, t)ρ (3.21)

where xεRn is the state vector and ρεR represents the control input. It is assumed

that the g(x, t) is full rank (controllable). In practical applications, if system is

not perfectly modeled then system operates with uncertainties caused by variation

in parameters and external disturbances. So, equation (3.1) can be reformulate as

ẋ = f(x, t) + g(x, t)ρ+ ξ(x, t) (3.22)

where ξ(x, t) shows the matched disturbances and it can be represented as

ξ(x, t) = g(x, t)δ (3.23)

One thing is evident that the disturbances present in the above nominal system

is norm bounded and it would be less than any positive scalar value. For the

designing of control law, ρ should be divided in to two parts, ρ0 and ρ1, where ρ0

is being the ideal control and ρ1 is designed to counter the perturbations. Then

(3.24) becomes,

ρ = ρ0 + ρ1 (3.24)

Using equation (3.24) along with (3.22), results (3.25)

ẋ = f(x, t) + g(x, t)ρ0 + g(x, t)ρ1 + ξ(x, t) (3.25)

By [8], sliding manifold becomes

σ(x) = σ0(x) + z (3.26)
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In equation (3.26), σ0(x) is for the conventional sliding surface, and z represents

the integral term. By taking the time derivative of (3.26) along equation (3.25)

we got

σ̇ = ∇σ0[f(x, t) + g(x, t)ρ0 + g(x, t)ρ1 + ξ(x, t)] + ż (3.27)

Here we have to choose integral term like the following form

ż =
∂σ0(x, t)

∂x
(f(x, t) + g(x, t)ρ0) (3.28)

z(0) = −σ0(x(0)) (3.29)

In above equation (3.29), initial condition z(0) is selected to fulfill the require-

ment of σ(0)=0. If the condition represented by above equation is satisfies, then

sliding mode will occurs from the very beginning. After placing equation (3.28) in

equation (3.27), we got

σ̇ = ∇σ0(g(x, t)ρ1 + ξ(x, t)) (3.30)

To enforce the sliding mode along equation (3.26), the discontinuous control func-

tion ρ1 in equation is selected as

ρ1 = − (∇σ0 (g(x, t)))−1 {M(x)sign(σ)} (3.31)

Here M(x) can be devised in such a way that its norm should be greater than the

norm of uncertainties term and the det|∇σ0g(x, t)| 6= 0. The beauty of integral

sliding mode control is non-compulsion of reaching phase, enhances robustness.

However, chattering further can be reduced using any low pass filter. The design

methodology is elaborated with the forthcoming example.
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Example

Now again consider the previous example displayed in equation (3.9).

ẋ1 = x2

ẋ2 = −g
l

sinx1 + 1
ml2

ρ

(3.32)

In this example, the control objective is to steer the states to the origin with initial

conditions are be set at x1(0) = x2(0) = 0. According to the procedure described

in above section, the control law is composed of two components appear as

ρ = ρ0 + ρ1 (3.33)

In equation (3.33), the second component from the right shows the continuous

component, and the first component from the right shows the discontinuous com-

ponent. The continuous component can be designed by pole placement while

assuming that sin(x1) = 0 i.e., ρ0 = -k1x1-k2x2, where k1, k2 are the gains, de-

signed using pole placement. However, the discontinuous term can be carried out

by assuming an integral manifold of the following form

σ(x1, x2) = c1x1 + x2 + z = σ0 + z (3.34)

By taking derivative (3.34) along (3.9), one has

σ̇ = c1x2 +

(
−g
l

sin(x1) +
1

ml2
(ρ0 + ρ1)

)
+ ż (3.35)

Choosing ż = −
(
c1x2 +

(
−g

l
sin(x1) + 1

ml2
ρ0

))
with z(0)=0, the above equation

(3.35) becomes

σ̇ =
1

ml2
ρ1 (3.36)

By comparing with above equation (3.35) with σ̇ = K1sign(σ), one has

ρ1 = −Ksign(σ) (3.37)
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where K = (ml2)K1 is the gain of the discontinuous component. By substituting

the continuous and discontinuous part in the expression (3.33), final control law

can be achieved. ISMC eliminates the reaching phase and results in the robust

regulation of the states to the origin.

3.4 Fast Terminal Sliding Mode Control

(FTSMC)

It is evident that the asymptotic convergence in the absence of a strong force may

not deliver fast convergence. The conventional terminal sliding mode control, on

the other hand, may not confirm fast convergence when the system states have

initial conditions entirely away from the equilibrium. However, the fast terminal

sliding is capable of combining the advantages of both SMC and Terminal Sliding

Mode (TSM) and can make the convergence to the equilibrium faster. Another

main aim of the use of this strategy is to acquire high precision tracking with

suppressed chattering. The sliding surface of fast terminal sliding mode controller

is designed as follows [94]:

σ(S(ξ)) = Ṡ(ξ) + α1S(ξ) + β1(S(ξ))
p1
q1 (3.38)

where S(ξ) can be defined as:

S(ξ) =
n−1∑
i=1

ciξi (3.39)

The gains α1 and β1 in (3.38) are positive constants, p1 and q1 are positive odd

integers such that q1 should be greater than p1. The finite time convergence of

FTSMC is very attractive for practical systems due to its high precision results.

The main limitation of this strategy towards nonlinear dynamical system is the

occurrence of singularity as the order of the system increases.
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3.5 Summary

The fundamentals of the theory of SMC, HOSMC, ISMC, and FTSMC are de-

scribed in this chapter. This primary purpose of this chapter is to provide neces-

sary background which is going to be helpful in studying next chapters.

In next chapter, robust control of the underactuated system is proposed via higher

order sliding mode control. Simulation and experimental results reveal the effec-

tiveness of the proposed control strategy.



Chapter 4

Robust Integral Sliding Mode

Approach

The control design of underactuated systems was the focus of the researchers in

the last decade and also in the existing era. The control design of these kind

of systems are quite demanding because of their vital theoretical and practical

applications. In addition, another significant feature of underactuated systems is

less damaged in case of collision with other objects which in turn provides more

safety to actuators. Sliding mode control based global stabilization techniques

is proposed by the Xu [63] for the class of underactuated systems in cascaded

form, but the problem with sliding mode control is the presence of chattering.

The aforesaid design strategy is quite suitable and resulted in satisfactory results,

but it is worthy to note that system often becomes too sensitive to disturbance

in the reaching phase of sliding mode strategy that the system may even become

unstable. Therefore, in order to get rid of this issue the Integral Sliding Mode

strategy was proposed [95].

In this chapter, a Robust Integral Sliding Mode Control (RISMC) approach for

underactuated systems is proposed by following the footprints of [63]. The benefits

of this strategy are the enhancement of robustness from initial time instant. It also

suppresses the well-known chattering phenomenon across the manifold. Before the

38
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design presentation, the system is suitably transformed into special format. An

integral sliding mode strategy is proposed for both the cases along with their com-

prehensive stability analysis. The proposed technique is practically implemented

on a benchmark ball and beam system to validate the effectivity and efficiency of

the designed algorithm. Note that, in this chapter my contributions are twofold.

The first one is the development of the RISMC and the second one is the practical

results of the system on the said system.

This chapter is structured as in Section 4.1 provide the brief description of the

problem. In Section 4.2 control law designed is presented. Section 4.3 shows the

design procedure implemented on ball and beam (taken as an illustrative example).

Section 4.4 and 4.5 displays the simulation and implementation results respectively,

which shows the effectiveness of control scheme. At the last conclusion is devised

in Section 4.6. In the upcoming section problem statement is presented.

4.1 Problem Statement

Expression presented in [11], for the equation of motion for underactuated systems

is expressed below

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= F (q)ρ (4.1)

In (4.1), L represents the represents the systems Lagrangian.Configuration vector

is represented by q∈Rn, ρ∈Rm denotes the actuator input vector and F (q)∈Rn×m

displays the external forces (non-square matrix). In case of m = rank(F ) = n,

(4.1) represents fully actuated system and for m = rank(F ) < n, system shown

in (4.1) acts like an underactuated system. The Lagrangian of system can be

expressed as

L(q, q̇) = T (q, q̇)− V (q) (4.2)

=
1

2
q̇TM(q)q̇ − V (q)
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which is the difference between systems kinetic energy T (q, q̇) and potential energy.

V (q). By [5], the system shown in (4.1) can be written in vector form as following

dynamic equation which governs the motion of underactuated system

J (q) q̈ + C (q, q̇) q̇ +G (q) + F (q̇) = B (ρ+ δ (q, q̇, t)) (4.3)

where q, q̇ ∈ Rnrepresents the position and velocity states which make a configura-

tion space of 2n variable (or states), J(q) ∈ Rn×n is the inertia matrix, C (q, q̇) ∈

Rn×n is the matrix describes the centrifugal and coriolis forces, G (q) ∈ Rn×1 is

gravitational forces and F (q̇) ∈ Rn×nrepresents fractional torque. B is the control

input channel, and ρ ∈ Rm such that m < n represents the applied control input.

The nonlinear term (J−1 (q)B) takes into account the uncertainties in the control

input channel. Since we consider the system to be controllable, therefore, before

proceeding to the problem formulation we assume that term (J−1 (q)B) is full

rank and the origin serves as an equilibrium point. Note that in equation (4.3),

J(q)q̈ and C(q, q̇) are related as:

X = J̇(q)− 2C(q, q̇) (4.4)

where X represents skew-symmetric matrix, in this regard inertia matric would

be J(q) symmetric, therefore we have:

J̇(q) = C(q, q̇) + CT (q, q̇) (4.5)

After partitioning the inertia matrix J(q), the system in (4.3) can be rewritten as

follows j11 (q) q̈1 + j12 (q) q̈2 + h1 (q, q̇) = 0

j21 (q) q̈1 + j22 (q) q̈2 + h2 (q, q̇) = ρ

(4.6)

where q = [q1 , q2]T represents the states of the system. In order to design a

robust control law for the class of underactuated system, the system in (4.3) can

be transformed into two formats which are described in the subsequent study.
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4.1.1 System in Cascaded Form

Now by following the strategy of [37] and [63], nonlinear system (4.4), can be

represented via following cascade form:



ẋ1 = x2 + d1

ẋ2 = f1 (x1, x2 , x3 , x4) + d2

ẋ3 = x4

ẋ4 = f2 (x1, x2 , x3 , x4) + b (x1, x2 , x3 , x4) ρ+ d3

(4.7)

where x1, x2, x3, x4 are the states of the systems (measurable), x1 and x2

are directing towards the position and velocity of the indirect actuated system

(4.7) while x3 and x4 points towards the position and velocity of the directly

actuated system. ρ represents the control input. The nonlinear functions f1 , f2:

R4n → Rn , b : R4n → Rn×n are smooth in nature. Now, following the

procedure of [63], the disturbances d1, d2 and d3 are deliberately introduced to

get an approximate controllable canonical form. Note that, practical systems like

ball and beam [4], cart-pole system [5], TORA [6], pendubot [39], overhead crane

[59] and acrobot [69] can be put in the form presented in (4.7). Before proceeding

to the control design of the above cascaded form, the following assumptions are

made.

Assumption 4.1

It is assumed that b (x1, x2 , x3 ,x4) is nonzero everywhere in the available space.

This assumption confirms the controllability of the given nonlinear system.

Assumption 4.2

Assume that

f1 (0, 0, 0, 0) = 0 (4.8)

Equation (4.8) confirms that the origin is an equilibrium point in closed loop.

Assumption 4.3
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∂f1
∂x3

is invertible or ∂f1
∂x4

is invertible, which, in other words, confirms the controlla-

bility of the given nonlinear system.

Assumption 4.4

f1 (0, 0, x3, x4) = 0is an asymptotically stable manifold, i.e. x3 and x4 approaches

zero.

Note that the assumption (4.3) and (4.4) lies in the category of non-necessary

conditions. These are only used when one needs to furnish the closed-loop system

with a sliding mode controller (see for details [63]).

4.1.2 Input Output Form

The system in (4.7) can be transformed into the following input-output form while

following the procedure reported in [95]. Let us assume that the system has a

nonlinear output y = h(x). To this end we denote

Lfh (x) =∂h(x)
∂x

f (x) =∇h (x) f (x)

Lfuh (x) =∂h(x)
∂x

fu=∇h (x) fu

(4.9)

Recursively, it can be written asL
0
fh (x) =h(x)

Ljfh (x) =Lf
(
Lj−1
f h (x)

)
=∇

(
Lj−1
f h (x)

)
f (x)

(4.10)

Assume that the system reported in (4.7) has a relative degree “r” with respect

to the defined nonlinear output. Therefore, owing to [96], one has

y(r)=Lf
rh (x) +Lg(Lf

r−1h (x) )ρ+ζ (x, t) (4.11)

subject to the following conditions:

1. Lg(Lf
ih (x) ) = 0 ∀ x ∈ B, whereB indicates the neighborhood of x0 for i<r−1;
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2. Lg(Lf
r−1h (x) )6=0, where ζ (x, t) represents the matched un-modeled uncer-

tainties in (4.11).

System (4.11), by defining the transformation y(i−1) = ξi [97], can be put in the

following form:



ξ̇1=ξ2

ξ̇2=ξ3

...

ξ̇n = ϕ(ξ̂, ρ̂) + γ(ξ̂){ρ(k) + ∆Gm(ξ̂, ρ̂, t)}

(4.12)

where k + r = n, and ρ̂ = (ρ, ρ̇, · · · , ρ(k−r)), ξ̂ = (ξ1, ξ2, . . . , ξn) transformed states

the so-called phase variables, ρ the control input and ∆Gm

(
ξ̂, ρ̂, t

)
represents

matched uncertainties. It is worthy to notice that the inverted pendulum and the

ball and beam systems can be replaced in the aforementioned form.

Note that, both the formats are ready to design the control law for these systems.

In the next section, the procedure for both the forms are outlined.

4.2 Control Law Design

The control design for the forms presented in (4.7) and (4.12), is carried out in

this section which we claim as our main contribution in this chapter. The main

objective of this work is to enhance the robustness of the system from the very

beginning of the process which is the beauty of ISMC. In general, the ISMC law

appears as follows [7]. In the subsequent subsections, the author aims to present

the design procedure.
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4.2.1 Integral Sliding Mode (ISM)

This variant of sliding mode possesses the main features of the sliding mode like

robustness and the existence chattering across the switching manifold. On the

other hand, the sliding mode occurs from the very start which, consequently,

provides insensitivity of disturbance from the beginning. The control law can

be expressed as follows. As an extension of traditional sliding mode schemes,

the concept of integral sliding mode concentrates on robustness during the entire

response. As there is no order reduction takes place, therefore sliding mode is

established without reaching phase, implying that the invariance of the system

to parametric uncertainty and external disturbances is guaranteed starting from

initial time instant. The control law can be expressed as follows

ρ = ρ0 + ρ1 (4.13)

where the first component on the right-hand side of (4.13) governs the systems dy-

namics in sliding modes whereas the second component compensates the matched

disturbances. Now, the aim is to present the design of aforesaid control compo-

nents.

Control Design for Case-1

This control design for case-1 is the main obstacle in this subsection. To define

both the component, the following terms are defined



e1 = x1

e2 = x2

e3 = f1 (x1, x2, x3, x4)

e4 = ∂f1
∂x1
x2 + ∂f1

∂x2
f1 + ∂f1

∂x3
x4

(4.14)

Using these new variables, the components of the controller are designed in the

following subsection. For the sake of completeness, the design of this component

is worked out via simple pole placement. Following the design procedure of pole
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placement method, one gets

ρ0 = −k1e1 − k2e2 − k3e3 − k4e4 (4.15)

where ki, i = 1, 2, 3, 4 are the gains of this control component. This control

component steers the states of the nominal system to their defined equilibrium.

Now, in the subsequent study the design of the uncertainties compensating term

is presented. An integral manifold is defined as follows

σ = c1e1 + c2e2 + c3e3 + e4 + z = σ0 + z (4.16)

where σ0 = c1e1 + c2e2 + c3e3 + e4 represents the conventional sliding manifold

which is Hurwitz by definition. Now, computing σ̇ along (4.5), one has

σ̇ = c1(x2 + d1) + c2(f1 + d2) + c3

(
df1

dt

)
+
d

dt

(
∂f1

∂x1

x2

)
+
∂f1

∂x1

ẋ2

+
d

dt

(
∂f1

∂x2

f1

)
+
∂f1

∂x2

ḟ1 +
d

dt

(
∂f1

∂x3

x4

)
+
∂f1

∂x3

f2

+
∂f1

∂x3

bρ0 +
∂f1

∂x3

bρ1 +
∂f1

∂x3

d3 + ż

(4.17)

Now, choose the dynamics of the integral term as follows:

ż = −c1x2 − c2f1 − c3

(
df1

dt

)
− d

dt

(
∂f1

∂x1

x2

)
− ∂f1

∂x1

ẋ2

− d

dt

(
∂f1

∂x2

f1

)
− ∂f1

∂x2

ḟ1 −
d

dt

(
∂f1

∂x3

x4

)
− ∂f1

∂x3

ρ0

(4.18)

The expression of the term which compensates the uncertainties may be written

as follows

ρ1 = −
(
∂f1

∂x3

b

)−1(
∂f1

∂x3

f2 +Ksign (σ)

)
(4.19)

The overall controller will look like

ρ = −k1e1 − k2e2 − k3e3 − k4e4 −
(
∂f1

∂x3

b

)−1(
∂f1

∂x3

f2 +Ksign(σ)

)
(4.20)

The constants c′is are control gains which are selected intelligently according to
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bounds. In the forthcoming paragraph, the stability of the presented integral

sliding mode is carried out in the presence of the disturbances and uncertainties.

Consider the following Lyapunov candidate function:

V =
1

2
σ2 (4.21)

The time derivative of this function along the dynamics (4.14) becomes

V̇ = σσ̇ = σ

{
c1(x2 + d1) + c2(f1 + d2) + c3

(
df1

dt

)
+
d

dt

(
∂f1

∂x1

x2

)
+
∂f1

∂x1

ẋ2

+
d

dt

(
∂f1

∂x2

f1

)
+
∂f1

∂x2

ḟ1 +
d

dt

(
∂f1

∂x3

x4

)
+
∂f1

∂x3

f2

+
∂f1

∂x3

bρ0 +
∂f1

∂x3

bρ1 +
∂f1

∂x3

d3 + ż

}
(4.22)

The substitution of (4.18 - 4.19) results in the following form

V̇ ≤ − |σ| η1 < 0 or V̇ +
√

2η1

√
V < 0 (4.23)

subject to K ≥ [|| ∂f1
∂x3
d3 + c1d1 + c2d2||+ η].

This expression confirms the enforcement of the sliding mode from the very be-

ginning of the process, i.e., σ→0 in finite time. Now, we proceed to the actual

system’s stability. If one considers e1 as the output of the system then, e2, e3

and e4 becomes the successive derivatives of e1. Whenever, σ = 0 is achieved, the

dynamics of the transformed system (4.14) will converge asymptotically to zero

under the action of the control. component (4.15) [4]. That is, in closed loop, the

transformed system dynamics will be operated under (4.15) as follows:


ė1

ė2

ė3

ė4

 =


0 1 0 0

0 0 1 0

0 0 0 1

−k1 −k2 −k3 −k4




e1

e2

e3

e4

 (4.24)

and the disturbances will be compensated via (4.19). The asymptotic convergence
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of e1, e2, e3 and e4 to zero means the convergence of the indirectly actuated system

(equation 4.7, first two equations) to zero. On the other hand, the states of the

directly actuated system (equation 4.7, last two equations) will remain bounded;

that is, state of (4.7) will have some nonzero value in order to keep e1 at zero.

Thus, the overall system is stabilized and the desired control objective is achieved.

Control Design for Case-2

The nominal system related to (4.12) can be replaced in the subsequent alternative

form 

ξ̇1=ξ2

ξ̇2=ξ3

...

ξ̇r=χ
(
ξ̂, ρ̂, ρ(k)

)
+ρ(k)

(4.25)

where χ
(
ξ̂, ρ̂, ρ(k)

)
= ϕ

(
ξ̂, ρ̂
)

+
(
γ
(
ξ̂
)
−1
)
ρ(k) It is assumed that χ

(
ξ̂, ρ̂, ρ(k)

)
= 0 at t = 0 in addition to the next supposition that (4.25) is governed by ρ0

ξ̇1=ξ2

ξ̇2=ξ3

...

ξ̇r=ρ0

(4.26)

or

ξ̇=Aξ+Bρ0 (4.27)

where

A=

 0(r−1)×1 I(r−1)×(r−1)

01×1 01×(r−1)

 , B=

 0(r−1)×1

1

 (4.28)

Once again, following the pole placement procedure, one may have, for the sake

of simplicity, the input ρ0 is designed via pole placement, that is,

ρ0 = −K0
T ξ (4.29)
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Now to get the desired robust performance, the following sliding manifold of inte-

gral type [7] is defined

σ (ξ) = σ0 (ξ) + z (4.30)

where σ0 (ξ) is the usual sliding surface and z represents the integral term. The

time derivative of (4.30) along (4.12) yields

ż = −

(
r−1∑
i=1

ciξi+1+ρ0

)
(4.31)

z (0) = −σ0(ξ(0)) (4.32)

and

ρ1 =
1

γ
(
ξ̂
) (−ϕ(ξ̂, ρ̂)− (γ (ξ̂)− 1

)
ρ0 −Ksignσ

)
(4.33)

The sliding mode is being enforced by the control law along the sliding manifold

defined in (4.30), where K can be selected in accordance with subsequent stability

analysis.

Thus, the final control law becomes

ρ= −K0
T ξ+

1

γ
(
ξ̂
) (−ϕ(ξ̂, ρ̂)− (γ (ξ̂)− 1

)
ρ0 −Ksignσ

)
(4.34)

Theorem 4.1:

The sliding mode against the switching manifold σ = 0 can be ensured if the

following conditions are satisfied,|∆Gm(y, ρ, t)| ≤ β1

K ≥ [KMβ1 + η1]

(4.35)

where η1 is a positive constant.
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Proof:

To prove sliding mode finite time enforcement, differente (4.25) along the dynamics

of (4.7), and then substituting (4.34), one has

σ̇ (ξ) =
r−1∑
i=1

ciξi+1 + ρ0 −Ksignσ + γ
(
ξ̂
)

∆Gm

(
ξ̂, ρ̂, t

)
+ ż (4.36)

By substituting (4.31) in (4.36) and then rearranging, one obtains

σ̇ (ξ) = −Ksignσ + γ
(
ξ̂
)

∆Gm

(
ξ̂, ρ̂, t

)
(4.37)

Now, the time derivative of the Lyapunov candidate function V = 1
2
σ2, with the

use of the bounds of the uncertainties, becomes

V̇ ≤ − |σ| [−K +
∣∣∣γ (ξ̂)∆Gm

(
ξ̂, ρ̂, t

)∣∣∣ (4.38)

This expression may also be written as

V̇ ≤ − |σ| η1 < 0 or V̇ +
√

2η1

√
V < 0 (4.39)

provided that

K ≥ [KMβ1 + η1] (4.40)

The inequality in (4.39) presents that σ(ξ) approaches zero in a finite time ts [93],

such that

ts ≤
√

2η1
−1
√
V (σ (0)) (4.41)

which completes the proof.

4.3 Illustrative Example

The control algorithms presented in this section is applied to the control design of

a benchmark system (ball and beam). The assessment of the proposed controller,
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Firgure 1 
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Figure 10 

Figure 4.1: Schematic Diagram of the Ball and Beam System.

for the ball and beam system, is carried out on the basis of output tracking,

robustness enhancement via the elimination of reaching phase and chattering free

control input in the presence of uncertainties [95, 98].

4.3.1 Description of the Ball and Beam System

The ball and beam system is a very sound candidate for the class of underactuated

nonlinear system. It is famous because of its nonlinear nature and due to its wide

range of applications in the current era like passenger cabin balancing in luxury

cars, balancing of liquids, balancing of liquid fuel in vertical take-off objects. In

term of control scenarios, it is an ill-defined relative degree system which, to some

extent, do not support input-output linearization. A schematic diagram with their

typical parameters of the ball and beam system is displayed in the adjacent Fig.

4.1 and Table 4.1, respectively.

The equipment used in this study is manufactured by GoogolTech. In general,

this system is equipped with a metallic ball, which is let free to roll on a rod

having a specified length having one end fixed and the other end is allowed to

move up and down via an electric servo motor. The position of the ball can

be measured via different techniques. The measured position is feedback to the

system and accordingly the motor which works like an actuator which moves the

ball up and down and makes balanced the ball at the user defined position. The
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Table 4.1: Parameters and values used in equations.

Symbol Quantity Units Values

g Gravitational acceleration m/s2 9.81

m Ball mass kg 0.04

M Beam mass kg 0.15

L Beam length m 0.4

Rm Motor armature resistance Ω 9

Jm Motor moment of inertia Nm/(rad/s2) 7.35×10−4

Cm Motor torque constant Nm/A 0.0075

Cg Ratio of gear – 4.28

d Radius of arm connected to servo motor m 0.04

J1 Beam moment of inertia kgm2 0.001

Cb Back emf value V/(rad/s) 0.5625

motion governing equation of this system are given below which are adapted from

[4, 28-29].

(mr2 + T1) β̈ + (2mrṙ + T2) β̇ +
(
mgr + L

2
Mg
)

cosβ = ρ

T4r̈ − rβ̇2 + gsin β = 0

(4.42)

where θ (t) angle subtended to make stable the ball, the lever angle is represented

by β (t), r (t) is the position of the ball on the beam and vin (t) is the input

voltage of the motor whereas the controlled input appears mathematically via the

expression ρ (t) = T3vin(t) in the dynamic model.

The derived parameters used in the dynamic model of this system are represented

by T1, T2, T 3 and T4 with the following mathematical relations [4].

T1 = Rm×Jm×L
Cm×Cb×d

+ J1 T3 = 1 + Cm
Rm

T2 = L
d

(
Cm×Cb
Rm

+ Cb + Rm×Jm
Cm×Cg

)
T4 = 7

5

(4.43)

The equivalent state space model of this is described as follows by assuming x1 =
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r (position of ball), x2 = ṙ (rate of change of position), x3 = β (beam angle) and

x4 = β̇ represents the rate of change of angle of the motor.

ẋ1 = x2

ẋ2 = 1
T4

(−gsin(x3))

ẋ3 = x4

ẋ4 = 1
mx21+T1

(ρ− (2mx1x2 + T2)x4 −

 mgx1

+ L
2
Mg

 cos x3)

(4.44)

Now, the output of interest is y = x1,which represents the position of the ball.

This representation is similar to that reported in (4.7). In the next discussion, the

controller design is outlined.

4.3.2 Controller Design

Following, the procedure outlined in Section 4.2,

y = x1,

ẏ = x2,

ÿ = − g
T4
sin(x3),

y(3) = − g
T4
x4cos(x3),

y(4) =
1

T4 (mx2
1 + T1)

[
− ρcos x3 + (2mx1x2 + T2)x4cos x3

+

(
mgx1 +

L

2
Mg

)
cos2x3 + x4

2
(
mx2

1 + T1

)
sinx3

]
,

(4.45)

y(4) = fs + hsρ, (4.46)

where

ϕ(ξ) = fs =
g

T4

[
(2mx1x2 + T2)x4 +

(
mgx1 + L

2
Mg
)
cosx3

mx2
1 + T1

× cosx3 + x2
4sinx3

]
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and

γ(ξ) = hs =
−gcos x3

T4(mx2
1 + T1)

Now, writing this in the controllable canonical form (phase variable form), one

may have 

ξ̇1=ξ2

ξ̇2=ξ3

...

ξ̇4=ϕ
(
ξ̂
)

+γ
(
ξ̂
)
ρ+γ

(
ξ̂
)

∆Gm

(
ξ̂, ρ, t

)
(4.47)

where

y(i−1) = ξi, (4.48)

γ(ξ̂)∆Gm(ξ̂, ρ, t) represents the matched model uncertainties. Moreover, it is ob-

served that the relative degree is 4, therefore, system bears no input derivatives.

Here we discuss ISMC on ball and beam system with fixed step tracking as well

as variable step tracking. The integral manifold is defined as follows

σ = c1ξ1 + c2ξ2 + c3ξ3 + ξ4 + z (4.49)

The time derivative of above expression develops into

σ̇ = c1ξ̇1 + c2ξ̇2 + c3ξ̇3 + ϕ(ξ̂) + γ(ξ̂)ρ0 + γ(ξ̂)ρ1 + ż (4.50)

and ż appears as

ż = −c1ξ2 + c2ξ3 + c3ξ4 − ϕ
(
ξ̂
)
− γ

(
ξ̂
)
ρ0 (4.51)

The expression of the overall controller becomes

ρ=−k1ξ1−k2ξ2−k3ξ3−k4ξ4+
1

γ
(
ξ̂
) {−ϕ(ξ̂)−(γ (ξ̂)−1

)
ρ0 −Ksignσ

}
(4.52)

For aiming reference tracking, integral manifold and the controller will appear as

follows
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σ = c1 (ξ1 − rd) + c2ξ2 + c3ξ3 + ξ4 + z (4.53)

ρ=−k1(ξ1−rd)−k2ξ2−k3ξ3−k4ξ4+
1

γ
(
ξ̂
) {−ϕ(ξ̂)− (γ (ξ̂)−1

)
ρ0 −Ksign(σ)

}
(4.54)

where rd is the desired reference with ˙rd,r̈d,
...
rd are bounded.

4.4 Simulation Results

The simulation study of the system is carried by considering the reference tracking

of a square wave signal and sinusoidal wave signal. In the subsequent paragraph,

their respective results will be demonstrated in detail.

In case the efforts are directed to track a fixed square wave signal in the presence of

disturbances, the initial conditions of the system were set to x1 (0) = 0.4, x2 (0) =

x3 (0) = x4 (0) =0. Furthermore, the square wave was defined in the simulation

code as follows

rd (t) =


20cm 0 ≤ t ≤ 19

14cm 20 ≤ t ≤ 39

20cm 40 ≤ t ≤ 60

(4.55)

The gains of the proposed controller used in (4.34) are chosen according to the

Table 4.2 shown below:

Table 4.2: Parametric values used in the square wave tracking.

Constants C1 C2 C3 K1 K2 K3 K4 K

Values 1.2 1.2 0.11 402.98 250.18 60 4.1 5

The output tracking performance of the proposed control input, when a square

wave is used as desired reference output, is shown Fig. 4.2. It can be clearly

examined that the performance is very appealing in this case. The corresponding

sliding manifold profile is displayed in Fig. 4.3 which clearly indicates that the
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Figure 4.2: Output tracking performance when a square wave is used as ref-
erence/desired output.
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Figure 4.3: Sliding manifold convergence profile in case of square wave track-
ing.

sliding mode is established form the very beginning of the processes which in turn

results in enhanced robustness.

The controlled input signal’s profiled is depicted in Fig. 4.4 with its zoomed profile

is shown in Fig. 4.5. It is evident from both the figures that the control input

derives the system with suppressed chattering phenomenon which is tolerable for

the system actuators health. Now, from this case study, it is concluded that

integral sliding mode approach is an interesting candidate for this class.

In this case study, once again, efforts are focused on the tracking of a sinusoidal

signal, which is defined as rd (t) = sin (t) , in the presence of disturbances. Like
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Figure 4.4: Control input in square wave reference tracking.
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Figure 4.5: Zoom profile of the control input depicted in figure 4.4.

the previous case study, the initial condition of the system was set to x1 (0) =

0.4, x2 (0) = x3 (0) = x4 (0) =0. In addition, the gains of the proposed controller

presented in (4.54) are chosen according to the Table 4.3, presented below:

Table 4.3: Parametric values used in the sinusoid wave tracking.

Constants C1 C2 C3 K1 K2 K3 K4 K

Values 1.2 1.2 0.11 402.98 250.18 230 4.9 5

The output tracking performance of the proposed control input, when a sinusoidal

signal is considered as desired reference output, are shown Fig. 4.6. It can be
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Figure 4.6: Output tracking performance when a sinusoidal wave is used as
reference output.
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Figure 4.7: Sliding manifold convergence profile in case of sinusoidal wave
tracking.

clearly seen that the performance is excellent in this scenario. The corresponding

sliding manifold profile is displayed in Fig. 4.7 which confirms the establishment

of sliding modes from the starting instant and, consequently, enhancement of ro-

bustness. The controlled input signal’s profile is depicted in Fig. 4.8.

It is evident from the figures that the control input evolves with suppressed chat-

tering phenomenon which, once again, makes this design strategy a good candidate

for the class of these underactuated systems.
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Figure 4.8: Control input in sinusoidal wave reference tracking.

4.5 Implementation Results

The control technique proposed in this chapter is implemented on the actual ap-

paratus using the MATLAB environment. The detailed discussions are presented

below.

4.5.1 Experimental Setup Description

The experiment setup is equipped by GoogolTech GBB1004 with an electronic

control box. The beam length is 40cm along with a mass of the ball, that is, 40g

and an intelligent IPM100 servo driver which is used for moving the ball on the

beam. The experimental setup is shown in following Fig. 4.9.

The input given to apparatus is the voltage vin (t)and the output is the position of

the motor θ (t), which, in other words, is an input for the positioning of the ball on

the beam. The motor of the system is capable to rotate clockwise and anticlock-

wise to stabilize the ball. This apparatus uses potentiometer mounted within a

slot inside the beam to sense the position of the ball on the beam. The measured

position along the beam is fed to the A/D converter of IPM100 motion drive. The

power module used in Googoltech require 220V and 10A input. Note that the

control accuracy of this manufactured apparatus lies within the range of ±1mm.
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Figure 4.9: Experimental Setup of the Ball and Beam equipped via
GoogolTech GBB1004.

The typical parameters values are listed in Table 4.1. The environment used here

includes Windows XP as an operating system and MATLAB 7.12/Simulink 7.7.

Furthermore, the sampling time used in forthcoming practical results was 2ms.

In the experimental processes, the proposed controllers need velocity measure-

ments which are, in general, not available. One may use different kind of velocity

observers/differentiator for the velocity estimation. In order to make the imple-

mentation easy and simple, a derivative block of the Simulink environment is used

to provide the corresponding velocities measurements. In this experiment, the

initial conditions were set to x1 (0) = 0.28, x2 (0) = x3 (0) = x4 (0) =0.

 

Firgure 1 

 

Figure 11 

 

 

Figure 10 
Figure 4.10: Output tracking performance when rd = 22cm is set as refer-

ence/desired output.
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The reference signal which is needed to be tracked is being defined in (4.53). In

Figs. 4.10 and 4.11, the tracking performance is shown. The results reveal that

the actual signal x1(t) is pretty close to the desired signal rd (t) with a steady state

error which is approximately ±0.001m . The existence of this error is because of

the apparatus.
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Figure 10 

Figure 4.11: Output tracking performance when a square wave is used as
reference/desired output.

The observations of these tracking results make it clear that the practically imple-

mented results have very close resemblance with the simulation result presented

in Fig. 4.2. The error convergence depends on the initial conditions of the ball

on the beam. If the ball is placed very close to the desired reference value then it

will take little time to reach the desired position. On the other hand, the conver-

gence to the desired will take considerable time if the initial condition is chosen

far away from the desired values. This phenomenon of convergence is according

the equipment design and structure. The sliding manifold convergence and the

control input are shown in Figs. 4.12 and 4.13, respectively. The control input

and the sliding manifolds show some deviations in the first second.

This deviation occurs because the ball on the beam, being placed anywhere on

the beam, is first moved to one side of the beam and then ball moved to the

desired position. The zoomed profile of the control input, being displayed in Fig.

4.14, shows high-frequency vibration (chattering) with the very small magnitude of

±0.07. This makes the proposed control design algorithm an appealing candidate
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Figure 4.12: Sliding surface.
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Figure 4.13: Control input for reference tracking.

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Time (sec)

In
p

u
t 

P
e

rf
o

rm
a

n
ce

 

 

Control Input

Figure 4.14: Zoom profile of the control input depicted in Fig. 4.13.
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for this class of nonlinear systems. The gains of the controller being used in this

experiment are displayed in Table 4.4.

Table 4.4: Parametric values used in implementation.

Constants C1 C2 C3 K1 K2 K3 K4 K

Values 8 5 1 3 15 3 1 4

4.6 Summary

The control of underactuated systems, because of its fewer number of actuators

than the degree of freedom, is an interesting objective among the researchers. In

this chapter, an integral sliding mode control approach, due to its robustness from

the very start of the process, is employed to the control design of this class. The

design of the integral manifold relied upon a transformed form. The benefit of the

transformed form is that it makes easy and simple the design strategy along with

its applicability towards the class of underactuated systems which includes,the

systems like ball and beam, TORA, inertial wheel pendulum, acrobot, overhead

crane, cart-pole system and pendubot.The stability analysis and experimental re-

sults of the proposed control laws are presented, which convey the good features

and demand the proposed approach when the system operates under uncertainties.

In the upcoming chapter, aforesaid control technique is compared with other SMC

variants, and the RISMC shows the promising results among them.



Chapter 5

A Comparative Experimental

Study of Robust Sliding Mode

Control Strategies for

Underactuated Systems

This chapter presents a comprehensive comparative study for the tracking control

of a class of underactuated nonlinear uncertain systems. A given nonlinear model

of the underactuated system is, at first stage, transformed into an input-output

form and the driving applied control input of the transformed system is then de-

signed via four sliding mode control strategies, i.e., conventional first-order sliding

mode control, SOSMC, FTSMC, and ISMC. At the second stage, a ball and beam

system is considered and the aforementioned four control design strategies are ex-

perimentally implemented. A comprehensive comparative study of the simulation

and experimental results is then conducted, which take into account the track-

ing performance [95, 98], i.e., settling time, overshoots, robustness enhancement,

chattering reduction, sliding mode convergences, and control efforts.

It is worthy to mention here that in this chapter contributions are in three-fold,

i.e., the system transformation into canonical form by defining a suitable output,

63
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the simulation as well as practical implementation of the four control strategies

and the comparative analysis of the said techniques. The rest of the chapter is

presented in a manner like, section 5.1 portrays the problem formulation, where

control law designs of the SMC, SOSMC, ISMC, and FTSMC are presented in

Section 5.2. The aforesaid control strategies are being exercised on the illustrative

example in Section 5.3, where simulation are displayed in Section 5.4. Section 5.5

portrays the experimental results,where conclusion is derived in Section 5.6.

5.1 Problem Formulation

The dynamic equation which governs the motion of underactuated system as dis-

cussed in chapter 4 is represented as:

J (q) q̈ + C (q, q̇) q̇ +G (q) + F (q̇) = B (ρ+ δ (q, q̇, t)) (5.1)

Moreover, the system (5.1) in cascaded form can be written as follows [24]:



ẋ1 = x2 + d1

ẋ2 = f1 (x1, x2 , x3 , x4) + d2

ẋ3 = x4

ẋ4 = f2 (x1, x2 , x3 , x4) + b (x1, x2 , x3 , x4) ρ+ d3

(5.2)

where x1, x2, x3, x4 are the available states of the systems, d1, d2 and d3 are

bounded disturbances, f1 ( x1, x2, x3, x4) and f2 ( x1, x2, x3, x4) are nonlinear

smooth functions. The nonlinear smooth function b ( x1, x2, x3, x4) represents

the control input channel and ρ is the applied controlled input.The description

and assumptions for system (5.1) and (5.2) are same as discussed in chapter 4.

Remark 5.1
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Since every control methodology can be easily employed to controllable canonical

forms, therefore, we aim to transform the newly established form (5.2) to a con-

trollable canonical form. In this way, one may eliminate the required condition on

the disturbances d1, d2 and d3 [63]. In addition, one can easily employ the so far

available techniques. Such formats are applicable for nonlinear systems like ball

and beam [4], cart-pole system [5], TORA [6], pendubot [39], overhead crane [59]

and acrobot [69].

Now, by following the procedure defined in section 4.1, the system shown in (5.2)

can be transformed into the following input-output form:



ξ̇1=ξ2

ξ̇2=ξ3

...

ξ̇n=ϕ
(
ξ̂, ρ̂
)

+γ
(
ξ̂
)
{ρ(k)+∆Gm

(
ξ̂, ρ̂, t

)
}

(5.3)

where k + r = n, and ρ̂ =
(
ρ, ρ̇, · · · , ρ(k−r)). In (5.3), state vectors and matched

uncertainties are represented by ξ̂=[ξ1, ξ2, . . . ,ξn] and ∆Gm

(
ξ̂, ρ̂, t

)
, respectively.

The symbol ρ is the applied control input.

Note that the nonlinear dynamics of an inverted pendulum, double inverted pen-

dulum, ball and beam system, and flexible joints manipulator of link 1 can be

easily replaced in the above equivalent input-output form. Before the design it is

suitable to assume that:

Assumption 5.1

∣∣∣∆Gm (ξ̂, ρ̂, t)
∣∣∣ ≤ Γ (5.4)

In a realistic sense, this assumption means that the uncertainty has a tolerable

magnitude. Now, the problem in hand is the design of a controller for system

(5.3). Having controlled (5.3) will imply a clear solution to the control problem of

system (5.2). The core control problem of system (5.3) is to steer the real state to
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zero, i.e., a regulation problem is considered. This task is fulfilled via a family of

control strategies, i.e., FOSMC, SOSMC, ISMC, and FTSMC while considering

the system subject to matched disturbances. At this stage, we are now ready to

pursue its control design via the aforementioned family of sliding mode controllers.

5.2 Control Law Design

In this section, the control design for the system (5.3) is presented via a family of

sliding mode control strategies. Here we proceed by designing the control law via

FOSMC, SOSMC, ISMC, and FTSMC.

5.2.1 Sliding Mode Control

The sliding mode control (see for more detail [7]) is always considered as an effec-

tive and efficient approach in control systems because of its invariance in sliding

mode, i.e., it results in robustness against uncertainties in sliding mode. The de-

sign of SMC usually supports systems which have relative degree one with respect

to the sliding manifold. The control law is always composed of two components,

i.e., an equivalent control component, and a discontinuous control component.

Mathematically, it can be expressed as follows:

ρ = ρeq + ρsw (5.5)

In order to design a control law, at first step, a switching manifold of the following

form is considered.

σ(ξ) =
n∑
i=1

ciξi (5.6)

Computing the time derivative of (5.6) along (5.3) one may have

σ̇ (ξ) = c1ξ2 + ...+ ciξi+1 + ϕ
(
ξ̂, ρ̂
)

+ γ
(
ξ̂
)
ρ (5.7)
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Now by posing σ (ξ) = 0, one gets

ρeq = − 1

γ
(
ξ̂
) (ϕ(ξ̂, ρ̂)+

n∑
i=1

ciξi+1

)
(5.8)

To design the discontinuous control component, a Lyapunov of the following form

is defined.

V (ξ) =
1

2
σ2 (5.9)

Calculating the time derivative of this function along (5.3) and then substituting

(5.8), one may get

V̇ (ξ) = σ(ξ)
(
γ
(
ξ̂
)

∆Gm(ξ̂, ρ̂, t) + ρsw

)
(5.10)

Now by choosing the expression of the discontinuous term as follows:

ρsw = −Ksign(σ) (5.11)

By using the bound of uncertainties (5.4), one has

V̇ (ξ) ≤ − |σ| [−K +
∣∣∣γ (ξ̂)∆Gm(ξ̂, ρ̂, t)

∣∣∣] (5.12)

This can also be expressed as

V̇ (ξ) ≤ − |σ|ϑ ≤ 0 (5.13)

provided that

K ≥ [KmΓ + ϑ] (5.14)

whereϑ and Γ are positive constants and Km is the maximum absolute value of

γ
(
ξ̂
)

. The inequality in (5.13) confirms that σ(ξ) approaches zero in a finite

time ts [87]. Consequently, the states of the system (5.3) will be steered to the

origin via the control law defined in (5.5) with detailed expressions in (5.8) and

(5.11). In SMC, the controller suffers from high frequency vibration in sliding

mode phase. In order to reduce this dangerous vibration, in the next subsection,
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the same problem is handled with second order sliding modes.

Remark 5.2

The most prominent advantage of the first order SMC is the order reduction in slid-

ing mode. This order reduction results in insensitivity to disturbances and model

uncertainties. However, to keep the sliding mode, the control input has to switch

with infinite frequency along a sliding constraint. This switching causes severe

damage to the system components. This characteristic is no more advantageous

in the real word and even degrades the sliding modes fascination.

5.2.2 Second Order Sliding Mode Control

Since the drawback/limitation of the conventional SMC is chattering effect [99],

which degrades the performance of the system and may lead towards system in-

stability. Therefore, the chattering suppression/removel was focused by a vast

number of researchers. In literature, the saturation function is used instead of

the discontinuous function [26]. However, in this case, the robustness, as well

as accuracy, is partially lost. The other mainstream approach was the use of an

observer-based approach which results in less magnitude of the uncertain term

[27]. Consequently, the chattering was suppressed.

In the context of chattering removal, the most famous approach was the HOSM

control technique [104]. In this approach, the sliding mode occurs along the inter-

section of the sliding variable and its derivative of order r. In this case, the sliding

set is defined to be σ = σ̇= σ̈ =
...
σ = · · · = σ(r−1) = 0. The structure of the con-

troller is designed in such a way that it confirms finite time enforcement of sliding

mode along the defined sliding set in the presence of the disturbances/uncertain-

ties which in turn results in increased accuracy of the sliding modes and output

convergence. Moreover, the increase in the order of sliding mode results in re-

duced chattering. However, the robustness decreases. In the literature, the most

famous and appealing relative degree one higher order sliding mode controller is
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the super twisting (STW) which has considerable robustness with acceptable chat-

tering reduction. We now intend to design super-twisting controller for this class

of nonlinear systems.

5.2.2.1 Super-twisting Sliding Mode Control

In this design, the sliding set consists of the intersection of hyperplanes σ (ξ) = 0

and σ̇ (ξ) = 0 i.e., the sliding mode occurs on the following set

σ (ξ) = σ̇ (ξ) = 0 (5.15)

Since STW deals with relative degree one case [91], therefore, the sliding variable

(5.6) is quite suitable for this design strategy. Now, by taking the time derivative

of (5.6), along (5.3) one gets

σ̇ (ξ) =
n−1∑
i=1

ciξi+1 (5.16)

or

σ̇ (ξ) = c1ξ2 + ...+ ciξi+1 + ϕ
(
ξ̂, ρ̂
)

+ γ
(
ξ̂
)
ρ (5.17)

This can also be realized as

σ̇ (ξ) = Ψ1(ξ) + γ(ξ̂)ρ (5.18)

where

Ψ1 (ξ) = c1ξ2 + ...+ ciξi+1 + ϕ
(
ξ̂, ρ̂
)

(5.19)

By following [1], the control law can be expressed as ρ = ρ1−Ψ1(ξ)

γ(ξ̂)
, where ρ is

chosen according to the strategy of [91] as follows:

ρ1 = −k1sign (σ) |σ|
1
2 − k2σ + ω

ω̇ = −k3sign (σ)− k4σ

(5.20)
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In expression [91], ki; i = 1, 2, 3, 4 are positive gains. If one chose ki according

to [100], then the enforcement of sliding mode against σ (ξ) = σ̇ (ξ) = 0 can be

ensured in finite time. Moreover, by selecting (k2 = k4 = 0), equation (5.20) can

be reduced further like shown in equation (5.21),[91].

ρ1 = −k1sign(σ)|σ| 12 + ω

ω̇ = −k3sign(σ)

(5.21)

The chattering attenuation is a considerable advantage of the STW and it re-

mains insensitive to bounded perturbations, but these perturbations cannot in-

crease faster than a linear function of time or it can be said that they do not

need to be bounded [101]. For the stability and detailed proof, one may read

[91]. The sliding mode control strategy remains very sensitive to disturbances in

the reaching phase which may decrease the applicability of this technique. There-

fore, a reaching phase free sliding mode control was proposed which enhances the

robustness from the very beginning and considerably reduces chattering (see for

details [7]). In the subsequent study, an integral sliding mode for the system (5.3)

is designed.

Remark 5.3

Since the conventional SMC causes wear tear on the system components, therefore,

one of the main challenge which was solved via the second order sliding mode was

the chattering attenuation. This technique, on one hand, keep the main charac-

teristics of first order SMC, i.e., order reduction and on the other hand, suppresses

chattering. In addition, this technique makes easy the practical implementation.

However, one must be clear that the robustness of this technique decreases, as the

order of sliding mode increase.

5.2.3 Integral Sliding Mode Control

This technique retains the main features of the sliding mode with enhanced robust-

ness against matched disturbances with attenuated chattering across the switching
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manifold. Generally, the control law for ISM can be expressed as follows:

ρ = ρ0 + ρ1 (5.22)

where the first component on the right-hand side of the above equation governs

the system dynamics during sliding modes whereas the matched disturbances have

been compensated by the second component. The sliding surface of ISM is defined

as:

σ (ξ) =
n∑
i=1

ciξi + z (5.23)

Now, by adapting the strategy proposed in [28] (also in previous chapter), the

control structure can be chosen as follows:

ρ= −K0
T ξ− 1

γ
(
ξ̂
)(ϕ

(
ξ̂, ρ̂
)

+
(
γ
(
ξ̂
)
−1
)
ρ0 +Ksignσ) (5.24)

where

ż = −

(
n−1∑
i=1

ciξi+1+ρ0

)
(5.25)

ρ0 = −K0
T ξ (5.26)

and

ρ1=
1

γ
(
ξ̂
)(−ϕ

(
ξ̂, ρ̂
)
−
(
γ
(
ξ̂
)
−1
)
ρ0−Ksignσ) (5.27)

The initial condition of equation (5.25) is chosen such that the manifold remains at

zero at the initial time t = 0 i.e., z (0) = −σ0(ξ(0)) should be justified. (detailed is

given in previous chapter, also in [28]). This control law (5.24) establishes sliding

mode from the very start of the process and confirms the regulation of the states

of the system (5.3) to zero under the action of (5.26).

Remark 5.4

This design technique offers a number of advantages. The most promising one

is the establishment of sliding mode from the very start of the processes, i.e.,
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no reaching phase happens. Hence the system becomes more robust from the

initial time instant. In addition, the unwanted chattering phenomena can be

suppressed up to considerable order. However, no order reduction happens which

consequently makes the system sensitive to parametric variations. This sensitivity

to the parameter can be reduced by designing a continuous control component of

the controlled input more cleverly.

5.2.4 Fast Terminal Sliding Mode Control

It is evident that the asymptotic convergence in the absence of a strong force may

not deliver fast convergence. The conventional terminal sliding mode control, on

the other hand, may not confirm fast convergence when the system states have

initial conditions quite away from the equilibrium. However, the fast terminal slid-

ing is capable of combining the advantages of both SMC and TSM and can make

the convergence to the equilibrium faster. This job can be done via changing the

definition of the switching manifold. Therefore, in this section, the fast terminal

sliding mode for the class of underactuated system (5.3) is designed. Another main

aim of the use of this strategy is to acquire high precision tracking with suppressed

chattering. The sliding surface of fast terminal sliding mode controller is designed

as follows [95]:

σ(S(ξ)) = Ṡ(ξ)+α1S(ξ)+β1(S(ξ))
p1
q1 (5.28)

where S(ξ) can be defined as:

S (ξ) =
n−1∑
i=1

ciξi (5.29)

The gains α1 and β1 in (5.28) are positive constants, p1 and q1 are positive odd

integers such that q1 should be greater than p1. The time derivative of (5.28) along

(5.3) takes the form:

σ̇(S(ξ)) =

(
n−1∑
i=1

ciξi+1 + ϕ
(
ξ̂, ρ̂
)

+γ
(
ξ̂
)
ρ+ α1Ṡ (ξ) +

p1

q1

β
1

(S(ξ))
p1
q1
−1
Ṡ (ξ)

)
(5.30)
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By following the design strategies [5] and [94], the final control law can be expressed

as follows:

ρ = −( γ(ξ̂))
−1

(
n−1∑
i=1

ciξi+1 + ϕ
(
ξ̂, ρ̂
)

+ α1Ṡ (ξ) +
p1

q1

β
1

(S(ξ))
p1
q1
−1
Ṡ (ξ) +Ksign(σ)

)
(5.31)

In order to prove the stability of FTSMC for the system (5.3), the readers may

follow strategies of [5] and [94]. This design strategy confirms fast convergence of

the system’s states to the equilibrium with high precision and suppresses chattering

phenomena. Now, at this stage, the aforesaid design techniques are required to

be tested on an experimental setup. Therefore, in the forthcoming section, all the

controllers are implemented on an actual underactuated ball and beam system.

Remark 5.5

The FTSMC use a sliding manifold which not only results in the finite time en-

forcement of sliding mode, but also confirms the systems states convergence in

finite time. This finite time convergence results in high precision which makes this

system more appealing in practical systems. Like conventional SMC, its preserve

robustness in a sliding mode with considerably reduced chattering. The main

disadvantages of this technique is the singularity occurrence as the order of the

system increases. In addition, which treating different systems which deal hy-

drodynamics force result in an unknown sign of the Lyapunov derivative. Hence,

stability becomes questionable.

5.3 Illustrative Example

Once again ball and beam system is considered as an illustrative example of the

class of underactuated nonlinear systems which are influenced via the control law

design in the previous section. A comprehensive comparative simulation and ex-

perimental study is the core of the following study.
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5.3.1 Description of the Ball and Beam System

Ball and beam system is briefly discussed in the previous chapter in Section 4.3.1.

A schematic diagram of benchmark system (ball and beam system) are shown in

Fig. 4.1 whereas its typical parameters are listed in Table 4.1, respectively. The

motion governing equation of this system is same as shown in the previous chapter

as equation (4.41) adopted from [4, 28-29]:

(mr2 + T1) β̈ + (2mrṙ + T2) β̇ +
(
mgr + L

2
Mg
)

cosβ = ρ

T4r̈ − rβ̇2 + gsin β = 0

(5.32)

The equivalent state space model of (5.32) can be represented as (4.43), given

below:

ẋ1 = x2

ẋ2 = 1
T4

(−gsin(x3))

ẋ3 = x4

ẋ4 = 1
mx21+T1

(ρ− (2mx1x2 + T2)x4 −
(
mgx1 + L

2
Mg
)
cos x3)

(5.33)

5.3.2 Controller Design

Following, the procedure outlined in Section 4.2, Chapter 4.

y = x1,

ẏ = x2,

ÿ = − g
T4
sin(x3),

y(3) = − g
T4
x4cos(x3),

y(4) =
1

T4 (mx2
1 + T1)

[
− ρcos x3 + (2mx1x2 + T2)x4cos x3

+

(
mgx1 +

L

2
Mg

)
cos2x3 + x4

2
(
mx2

1 + T1

)
sinx3

]
,

(5.34)
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y(4) = fs + hsρ,

ϕ(ξ) = fs =
g

T4

[
(2mx1x2 + T2)x4 +

(
mgx1 + L

2
Mg
)
cos2x3 + x4

2sinx3

mx2
1 + T1

]
,

γ(ξ) = hs =
−gcos x3

T4(mx2
1 + T1)

Now, writing this in the controllable canonical form (phase variable form), one

may have 

ξ̇1=ξ2

ξ̇2=ξ3

...

ξ̇4=ϕ
(
ξ̂
)

+γ
(
ξ̂
)
ρ+γ

(
ξ̂
)

∆Gm

(
ξ̂, ρ, t

)
(5.35)

where

y(i−1) = ξi=1,2,3,4, (5.36)

5.3.2.1 Sliding Mode Control (SMC)

Here we discuss conventional SMC on the ball and beam system. Sliding manifold

defined in (5.6), is considered for n = 4 in following equation:

σ(ξ) = c1ξ1 + c2ξ2 + c3ξ3 + ξ4 (5.37)

Computing the time derivative of (5.37) along (5.35) one may have

σ̇(ξ) = c1ξ2 + c2ξ3 + c3ξ4 + ξ̇4 (5.38)

Further, after substituting (ξ̇4), ones get

σ̇(ξ) = c1ξ2 + c2ξ3 + c3ξ4 + ϕ(ξ̂) + γ(ξ̂)ρ (5.39)

Following the procedure laid in Section 5.2.1, the complete control structure be-

comes:
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ρ=
1

hs

[
−c1ξ2 − c2ξ3 − c3ξ4 − ϕ(ξ̂)

]
−Ksign(σ) (5.40)

where ρeq and ρsw are written as (5.41) and (5.42), respectively.

ρeq =
1

hs

[
−c1ξ2 − c2ξ3 − c3ξ4 − ϕ(ξ̂)

]
(5.41)

ρsw = −Ksign(σ) (5.42)

As the control objective is to perform the reference tracking here, therefore, the

sliding manifold and the controller will appear as follows:

σ(ξ) = c1(ξ1 − rd) +
4∑
i=2

ciξi (5.43)

where rd is the desired reference with ˙rd,r̈d,
...
rd are bounded.

5.3.2.2 Second Order Sliding Mode Control (SOSMC)

By following the procedure defined in Section 5.2.2, the sliding manifold σ for super

twisting sliding mode control remains the same as defined in (5.37) for n = 4. Since

reference tracking is objective, therefore, the sliding manifold appears as follows:

σ(ξ) =c1(ξ1−rd)+c2ξ2+c3ξ3+ξ4 (5.44)

Moreover, the final structure of the control input is calculated as follows:

ρ = −k1sign (σ) |σ|
1
2 − k2σ −

∫
(−k3sign (σ)− k4σ) (5.45)

5.3.2.3 Integral Sliding Mode Control (ISMC)

In case of ISMC, the integral manifold defined in (5.23) can be defined as follows

for the ball and beam system.
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σ (ξ) = c1 (ξ1 − rd) +
4∑
i=2

ciξi + z (5.46)

The dynamics of the integral term were calculated to be as follows

ż = −c1ξ2 + c2ξ3 + c3ξ4 − ϕ(ξ̂)− γ(ξ̂)ρ0 (5.47)

The final expression of the controller takes the form:

ρ=− k1(ξ1− rd)− k2ξ2− k3ξ3− k4ξ4+
1

γ (ξ)

(
−ϕ

(
ξ̂
)
−(γ

(
ξ̂
)
−1)ρ0 −Ksign(σ)

)
(5.48)

Note that the higher derivatives ˙rd,r̈d,
...
rd of the reference trajectory were assumed

to bounded.

5.3.2.4 Fast Terminal Sliding Mode Control (FTSMC)

In case of FTSMC for the considered ball and beam system with n = 4 the fast

terminal manifold will be defined as follows:

σ(S) = Ṡ(ξ)+α1S(ξ)+β1(S(ξ))
p1
q1 ,

Where S(ξ) = c1(ξ1 − rd) + c2ξ2 + ξ3 and p1 and q1 are positive odd integers. The

final mathematical structure of the applied controller was selected as follows:

ρ = (hs)
−1


−fs − c2ξ4 − c1ξ3 − α (c1ξ2 + c2ξ3 + ξ4)

−p1
q1
β1(c1 (ξ1 − rd) + c2ξ2 + ξ3 (ξ))

p1
q1
−1

(c1(ξ2) + c2ξ3 + ξ4)−Ksign(σ)

 (5.49)

5.4 Simulation Results

In this study, the ball and beam system defined in (5.32) is operated under the

action of the control laws (5.40), (5.45), (5.48) and (5.49). The gains used in
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 Figure 5.1: Output tracking performance of FOSMC, SOSMC(STW), ISMC
and FTSMC, rd = 22cm.

controller during simulation are reported in Table 5.1. The computer simulation

of the overall closed-loop system is carried by considering the reference tracking

to be a fixed point rd (t) and the initial condition of the system was set to be

x1 (0) = 0.4, x2 (0) = x3 (0) = x4 (0) =0. The reference trajectory was defined to

be

rd (t) = 22cm t > 0 (5.50)

The output tracking performance of all the four designed controllers is shown in

Fig. 5.1. It can be clearly examined that the tracking performance of ISMC is

very fast as compared to FOSMC and SOSMC. On the other hand, the perfor-

mance of FTSMC is slower as compared to the remaining strategies. However,

the precision of the FTSMC is very appealing. The zoomed version of reference

tracking highlights the convergence precision of all the strategies.

The beam angle stabilization profile for FOSMC, SOSMC (STW), ISMC and

FTSMC is displayed in Fig. 5.2. The separated profile of the beam angle stabi-

lization can be seen in Fig. 5.3.

The zoomed version of the angle stabilization shows the steady state error in

case of FTSMC as compared to the other stabilization strategies. In the beam
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Figure 5.2: Beam angle stabilization profile of FOSMC, SOSMC (STW),
ISMC and FTSMC, rd = 22cm.

 

Figure 5.3: Separate beam angle stabilization profile of FOSMC,
SOSMC(STW), ISMC and FTSMC.

angle stabilization, the FOSMC and ISMC are quite appealing. However, both

techniques suffer from chattering which will be discussed in following study.

The sliding manifold comparison of all the techniques is shown in Fig 5.4, and 5.5

with their respective control inputs are displayed in Fig 5.6 and 5.7. In case of

manifold convergence, the SOSMC carries substantial marks as compared to its

counterparts.
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Figure 5.4: Sliding manifold convergence profile of FOSMC, SOSMC(STW),
ISMC and FTSMC, rd = 22cm.

 

Figure 5.5: Separate sliding manifold convergence profile of FOSMC, SOSMC
(STW), ISMC and FTSMC.

However, in case of robustness enhancement and reaching phase elimination ISMC

is far better than the others. In term of chattering suppression, the FTSMC is

better which makes it an appealing candidate in electromechanical systems.

However, the chattering may be reduced in case of ISMC by considering a strong

reachability condition. Having chosen strong reachability condition, ISMC will

outshine the remaining SMC variants. Note that FOSMC, in this case, suffers

from the substantial magnitude of chattering which may cause the system failure.

In case of energy consumption, the ISMC, and FTSMC utilize low energy as
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Figure 5.6: Control Input profile of FOSMC, SOSMC(STW), ISMC and
FTSMC for reference tracking.

 

Figure 5.7: Separate control input profile of FOSMC, SOSMC(STW), ISMC
and FTSMC.

compared to FOSMC and SOSMC. Having analyzed, in our views, the ISMC

becomes an appealing candidate to be employed to electromechanical systems.

5.5 Experimental Results

In this study, the core objective is to keep the ball on a beam at the desired

position rd (t). The control algorithms designed in the Section 5.2, are imple-

mented on the actual ball on a beam system. This system is manufactured by

Googoltech GBB1004 with an intelligent IPM100 servo drive and an electronic
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Table 5.1: Parameters values used in the tracking for FOSMC, SOSMC(STW),
ISMC and FTSMC.

FOSMC

Constants C1 C2 C3 K1 K2 K3 K4 K

In Simulation 80 48 24 - - - - 50

In Practical Implementation 9 4 1 - - - - 1

SOSMC(STW)

Constants C1 C2 C3 K1 K2 K3 K4 K

In Simulation 80 48 14 37 0 2 0 25

In Practical Implementation 5 29 5 0.5 0 0.1 0 5

ISMC

Constants C1 C2 C3 K1 K2 K3 K4 K

In Simulation 1.2 1.2 0.11 402.98 250.18 60 4.1 5

In Practical Implementation 8 5 1 3 15 3 1 5

FTSMC

Constants C1 C2 C3 α1 β1 p1 q1 K

In Simulation 18 10 0.09 0.45 0.01 3 9 1

In Practical Implementation 100 70 10 2 0.11 1 9 12

control box which supports the MATLAB 7.12/Simulink 7.7 environment. Figure

5.8 shows the experimental setup. The other typical parameters of GBB1004 is

same as considered/described in Section 4.5.1. Note that the control accuracy

of this equipment lies within the range of ±1mm. During the practical imple-

mentation, the sampling time was chosen to be 2ms. The gains of the controller

used during the implementation (experimentation) are reported in Table 5.1. The

desired reference point on the beam was 22 cm.

Remark 5.6

In the experimental study, the translational position of the ball on a beam and

the angular position of the driving motor are available. The respective velocities

are calculated via the built-in velocity estimator. However, one may use reduced

order observer (see for instance [7]) for velocity estimation.
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Figure 5.8: Experimental Setup of the Ball and Beam equipped via Googoltech
GBB1004.

All the four techniques were implemented on the actual system, and their tracking

performances are displayed in Fig. 5.9 with zoomed results shown in Fig. 5.10.

These results follow lies within the vicinity of 0.22m which follow the physical

limitation of the system. It is clear from Fig. 5.9 that the performance of the

FTSMC and ISMC shows slower convergence to the reference point. However, the

steady-state error of these two techniques is quite smaller than the FOSMC and

SOSMC. The precision of FTSMC carries comparatively high marks as compared

to ISMC. It is noticeable that the ISMC result observes small oscillations and

shows a very stable behavior in the vicinity of the reference point. The results

of SOSMC, in this case, is quite impressive and quite acceptable as compared

to FTSMC and ISMC, but it loses precision. The results of FOSMC are not

acceptable because it exhibits oscillatory behavior along with low precision.

The comparative and separate beam angle stabilization profile for FOSMC, SOSMC

(STW), ISMC and FTSMC are displayed in Figs. 5.11 and 5.12, respectively. It

is worthy to notice that high chattering appears in the beam angle while imple-

menting FOSMC. Comparatively, little chattering appears in case of ISMC and

SOSMC. However, the beam angle of FTSMC exhibits with continuous chattering

with sufficient small amplitude. Although it is tolerable for this system yet, it is

quite dangerous in practical systems when they are supposed to be operated for a

long time. In the author views, the ISMC and SOSMC are quite appealing in this

case because once the angle is stabilized the system observes no chattering and in
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Figure 5.9: Output tracking performance of FOSMC, SOSMC(STW), ISMC
and FTSMC, rd = 22cm.

 

Figure 5.10: Zoom profile of output tracking performance of FOSMC,
SOSMC(STW), ISMC and FTSMC.

this case, it may not be that harmful to the system health. We summarize this

behavior as follows:

FOSMC: have maximum (high amplitude) chattering,

SOSMC(STW): have moderate chattering,

ISMC: have (more than STW, less than FOSMC),

FTSM: have minimal chattering but continuous.
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Figure 5.11: Beam angle stabilization profile of FOSMC, SOSMC(STW),
ISMC and FTSMC, rd = 22cm.

 

Figure 5.12: Separate beam angle stabilization profile of FOSMC,
SOSMC(STW), ISMC and FTSMC.

The sliding manifold convergence comparison, as well as separate profiles of all

the techniques, are shown in Figs. 5.13 and 5.14. The control efforts of these

algorithms are also displayed in Figs. 5.15 and 5.16. It is clear that all the four

controllers have stable sliding manifolds converge toward the origin. Figure 5.14

experimentally verified the sliding mode enforcements.

The manifold of the ISMC remains almost at zero which confirms the results

achieved in the simulations (see Fig. 5.4). The manifold of the FTSMC observes

some massive peaks which may threaten the health of the system. The SOSMC

and FOSMC manifold convergence is somewhat interesting.



A Comparative Experimental Study of Robust Sliding Mode 86

 

Figure 5.13: Sliding manifold convergence profile of FOSMC, SOSMC(STW),
ISMC and FTSMC, rd = 22cm.

 

Figure 5.14: Separate sliding manifold convergence profile of FOSMC,
SOSMC(STW), ISMC and FTSMC.

On the other hand, the control efforts of FTSMC is quite higher even when the

system is in sliding mode. This behavior reduces the applicability of FTSMC.

While looking at FOSMC control efforts and SOSMC efforts, they fascinate the

control designer to use these two strategies. However, the tracking behaviors of

both these techniques disappoints as compared to ISMC. In term of robustness,

ISMC remains more robust than the other the other three strategies because of

the reaching phase elimination.

Further, on Googoltech GBB1004 platform, the utilized energy comparison among
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Figure 5.15: Control Input profile of FOSMC, SOSMC(STW), ISMC and
FTSMC for reference tracking.

 

Figure 5.16: Separate control input profile of FOSMC, SOSMC(STW), ISMC
and FTSMC.

Table 5.2: Comparison of energy criteria (×104 J).

FOSMC SOSMC(STW) ISMC FTSMC

4.1072 3.2961 2.3461 2.5712

FOSMC, SOSMC(STW), ISMC and FTSMC is performed using the criteria pre-

sented in [1]:

J =

∫ 15

0

u2dt (5.51)

which is proportional to the energy delivered to the system. While comparing
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the energy utilization of these four algorithms, it comes out that ISMC utilizes

minimum energy. The second minimum energy is utilized by the FTSMC. The

third position is occupied by the SOSMC (see for details, Table 5.2).

5.6 Performance Analysis

The overall performance analysis is summarized in the form of Table 5.3, based

on different features in the experimental and simulation results. Having analyzed,

it was decided that ISMC carries substantial marks in case of robustness and

fast convergence with considerable suppression in chattering. However, in case of

precision and chattering suppression, the FTSMC can be preferred. The named

FOSMC exhibits high-frequency vibrations with the considerable magnitude and

with significant steady-state error whereas the SOSMC suffers from robustness

issues in the reaching phase with serious steady-state error. According to the

attributes presented in Table 5.3, it can be claimed that ISMC proves itself to be

an appealing control protocol for the class of underactuated systems.

5.7 Summary

A comprehensive comparative simulation and experimental study of the FOSMC,

ISMC, SOSMC, and FTSMC has been carried out in this work. The experimental

step which was considered in this work was the ball and beam system. Before the

design, the system was transformed to a controllable canonical form, and then the

control inputs were designed via the aforesaid strategies. The experimental and

simulation study was carried out in the MATLAB environment. Comprehensive

comparative analysis proves ISMC is best suitable for robustness and fast con-

vergence with suppressed chattering. However, when high precision is required

FTSMC may be preferred. The benefit of this study is to analyze the appealing

attitude of FTSMC and ISMC in electromechanical systems.
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Table 5.3: Comparative analysis FOSMC, SOSMC(STW), ISMC and FTSMC.

Attributes FOSMC SOSMC(STW) ISMC FTSMC

Tracking Control Slow
(Not precise)

Slow
(Not precise)

Very fast (Precise) Slow (Highly precise)

Settling Time Low Low Very low High

Overshoot High Very high Minimal No overshoot

Chattering Analy-
sis

Severe chattering Low chattering Minimal chattering Moderate chattering

Sliding Surface
Convergence

To origin, with chat-
tering of medium
magnitude
amplitude

Remains at the origin
with small magnitude
oscillations in the very
start

To origin, with moder-
ate chattering
amplitude

To origin, with consid-
erable high chattering
amplitude

Control Effort Very high High Lowest Low

Energy Utilization
(in terms of Joule
×104)

4.1075
(Maximum)

3.2961 2.3461
(Lowest)

2.5712

Computational
Complexity

Low High High High



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The underactuated nonlinear systems are always equipped with less number of

actuators than the system’s outputs. This feature offers certain benefits like re-

duction in weight and minimum energy usage. Along with certain benefits, there

always remain some drawbacks which is needed to be addressed. So far, many

control strategies are applied to such systems. Some of them includes passiv-

ity approach, back stepping approach, fuzzy control, optimal control, and sliding

mode control. In the aforesaid control strategies, sliding mode control acquires so

much attention from the researchers due to its robust response in the existence of

uncertainties. It has been widely employed to the class of UAS in the last decades.

However due to the variations in the dynamic structures of UAS, it is not applied

in the general scenario. In this work, main emphasis is the transformation of this

class to a more generalized form and the accomplishment of recent techniques.

In addition, the high frequency vibrations of the control law in sliding mode is

considered to be dangerous. Therefore, an integral sliding mode control approach

is proposed for this class. This strategy shows robustness from the very start of

the process. This technique along with improved robustness results in chattering

90



Conclusion and Future Work 91

reduction. The asymptotic tracking is achieved which is more appealing in real ap-

plications. This proposed ISMC is practically applied to a ball on a beam system

and quite fruitful implementation is observed.

In addition, comprehensive comparative simulation and experimental study of the

FOSMC, ISMC, SOSMC and FTSMC has been carried out. The experimental and

simulation study was performed in the MATLAB environment. Having analyzed,

it was decided that ISMC carries marks in case of robustness and fast convergence

with considerable suppression in chattering. However, in case of precision and

chattering suppression the FTSMC can be preferred. The named FOSMC exhib-

ited high frequency vibrations with considerable magnitude and with substantial

steady state error whereas the SOSMC suffers from robustness issues in the reach-

ing phase with considerable steady state error. The benefits of this study is to

analyze the appealing attributes and characteristics in practical underactuated

systems. Now, the future directions are outlined in the subsequent section.

6.2 Future Research Directions

The proposed work can be extended theoretically as well as from application per-

spectives in following ways.

• ISMC can be utilized in fusion with FTSMC or neural network.

• Adaptive ISMC can be implied instead of conventional ISMC in fusion with

fuzzy or neural network control strategy.

• Smooth super twisting control algorithm can be implied for the specific class

considering the aim of robust stabilization/tracking.

• Modeling with friction is ignored in the mathematical modeling of under-

actuated systems, which yet need to be explored further.

• Window of research is also present regarding flat underactuated systems.
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• New barriers can be crossed in the dimension of bounded control inputs, to

counter the saturated nonlinear state feedback problem.

• By utilizing the Micro Electromechanical Systems (MEMS) technology, there

is need to build small test benches for the underactuated systems.
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